

F 2983

Angèle Tersluisen, Klara Bauer, Kamyar Nasrollahi Mozhgan Shirani, Johannes Modersohn, Felix Reiter Günter Pfeifer, Annette Rudolph-Cleff

Untersuchung zur rechnerischen Bilanzierung solarer Luftheizsysteme und -konstruktionen

Fraunhofer IRB Verlag

F 2983

Bei dieser Veröffentlichung handelt es sich um die Kopie des Abschlussberichtes einer vom Bundesministerium für Verkehr, Bau und Stadtentwicklung -BMVBS- im Rahmen der Forschungsinitiative »Zukunft Bau« geförderten Forschungsarbeit. Die in dieser Forschungsarbeit enthaltenen Darstellungen und Empfehlungen geben die fachlichen Auffassungen der Verfasser wieder. Diese werden hier unverändert wiedergegeben, sie geben nicht unbedingt die Meinung des Zuwendungsgebers oder des Herausgebers wieder.

Dieser Forschungsbericht wurde mit modernsten Hochleistungskopierern auf Einzelanfrage hergestellt.

Die Originalmanuskripte wurden reprotechnisch, jedoch nicht inhaltlich überarbeitet. Die Druckqualität hängt von der reprotechnischen Eignung des Originalmanuskriptes ab, das uns vom Autor bzw. von der Forschungsstelle zur Verfügung gestellt wurde.

© by Fraunhofer IRB Verlag

2016

ISBN 978-3-8167-9737-1

Vervielfältigung, auch auszugsweise, nur mit ausdrücklicher Zustimmung des Verlages.

Fraunhofer IRB Verlag Fraunhofer-Informationszentrum Raum und Bau

Postfach 80 04 69 70504 Stuttgart

Nobelstraße 12 70569 Stuttgart

Telefon 07 11 9 70 - 25 00 Telefax 07 11 9 70 - 25 08

E-Mail irb@irb.fraunhofer.de

www.baufachinformation.de

www.irb.fraunhofer.de/bauforschung

Zukunft BAU

Endbericht zum Forschungsprojekt:

Untersuchung zur rechnerischen Bilanzierung solarer Luftheizsysteme und -konstruktionen

Gefördert durch das Bundesinstitut für Bau, Stadt und Raumforschung (BBSR)

Bundesinstitut für Bau-, Stadt- und Raumforschung

im Bundesamt für Bauwesen und Raumordnung

unter dem Förderkennzeichen 10.08.18.7-13.20.

Projektleiter:	JunProf. DrIng. Angèle Tersluisen
Projektteam:	DiplIng. Klara Bauer
	M.Sc. Kamyar Nasrollahi
	B.Sc. Mozhgan Shirani
	Prof. Johannes Modersohn
	DiplIng. Felix Reiter
Projektpartner:	Prof. Günter Pfeifer, TU Darmstadt
	Prof. DrIng. Annette Rudolph-Cleff, TU Darmstadt
Externer Berater:	Prof. DrIng. Thomas Lechner, FH Kaiserslautern

Kaiserslautern, November 2015

Formelzeichen, Variablen und Abkürzungen 6			
Kurzfas	Kurzfassung 8		
Abstrac	Abstract 9		
1	Forschungsfrage	10	
2	Forschungssystematik und -methode	12	
2.1	Detaillierte Bilanzierung	13	
2.2	Vereinfachte Bilanzierung	13	
3	Recherche/ Stand der Technik	14	
3.1	Luftkollektorprinzip	14	
3.2	Literaturrecherche	15	
3.3	Projektrecherche	17	
4	Anwedungsbereich	19	
5	Kategorisierung nach Wirkprinzipien	21	
6	Bilanzierungsansätze	23	
6.1	Kollektorbilanzierungen in Normen und Verweisen	23	
6.2	Implementierung einer Bilanzierung in der DIN V 18599	26	
7	Rechnerische Bilanzierung harmonisiert mit DIN V 18599	29	
7.1	Konduktionsluftkollektoren (Typ 1)	29	
7.1.1	Konduktionsluftkollektor (transparent)	30	
7.1.2	Konduktionsluftkollektor (opak)	32	
7.2	Konvektionsluftkollektoren (Typ 2)	33	
7.2.1	Raumluft-Konvektionsluftkollektoren	33	
7.2.1.1	Raumluft-Konvektionsluftkollektor (transparent)	33	
7.2.1.2	Raumluft-Konvektionsluftkollektor (opak)	36	
7.2.2	Raumluft-Konvektionsluftkollektoren mit 2-Zonen-Nutzung	38	

7.2.2.1	Raumluft-Konvektionsluftkollektor mit 2-Zonen-Nutzung (transparent)	38
7.2.2.2	Raumluft-Konvektionsluftkollektor mit 2-Zonen-Nutzung (opak)	40
7.2.3	Außenluft-Konvektionsluftkollektoren	43
7.2.3.1	Außenluft-Konvektionsluftkollektor (transparent)	43
7.2.3.2	Außenluft-Konvektionsluftkollektor (opak)	45
7.2.4	Außenluft-Konvektionsluftkollektoren mit 2-Zonen-Nutzung	46
7.2.4.1	Außenluft -Konvektionsluftkollektor mit 2-Zonen-Nutzung (transparent)	47
7.2.4.2	Außenluft -Konvektionsluftkollektor mit 2-Zonen-Nutzung (opak)	49
7.3	TGA-Luftkollektoren (Typ 3)	52
7.3.1	TGA-Luftkollektor (transparent/ opak)	52
8	Vereinfachte Bilanzierung	53
8.1	Grundlagen/ Voruntersuchungen	53
8.1.1	Modellgeometrie	53
8.1.2	Speicherzahl	58
8.1.3	Opake Schicht	59
8.1.4	Luftschicht	61
8.2	Bildung des Referenzmodells	62
8.2.1	Konstante Eingabeparameter	63
8.2.2	TRY-Wetterdaten	64
8.2.3	TRNFlow	65
8.2.4	Konvektion	65
8.2.5	Absorbierende Schicht	66
8.2.6	Opake Schicht	66
8.2.7	Transparente Schicht	66
8.3	Auswertung	67
8.3.1	Transmissions-/Konvektionswärmegewinne	67

8.3.2	Ausnutzungsgrad	68
8.3.2.1	Umrechnung auf abweichende Wetterregionen und Kollektorausrichtungen	68
8.3.3	Dynamischer U-Wert	68
8.3.3.1	Umrechnung auf abweichende Wetterregionen und Kollektorausrichtungen	69
8.4	Simulationsergebnisse	69
8.4.1	Konduktionsluftkollektoren (transparent)	69
8.4.2	Konvektionskollektoren (transparent)	72
9	Vergleich vereinfachter Bilanzierung mit rechnerische Bilanzierung	75
9.1	Transmission	75
9.2	Konvektion	77
10	Zusammenfassung	81
11	Ausblick	82
12	Anlagen	82

Formelzeichen, Variablen und Abkürzungen

Große lateinische Buchstaben

Α	Fläche [m²]
F	Faktor
1	solare Einstrahlung [W/m²]
Q	Wärme, Wärmemenge nach DIN EN ISO 7345 (DIN EN ISO 7345 1996) [Wh], [kWh], [Wh/a], [kWh/a]
R	Wärmedurchlasswiderstand/ Wärmeübergangswiderstand [W/(m².K)]
S	Speicherzahl [(kJ/m³.K)]
Т	Periodendauer [h]
U	Wärmedurchgangskoeffizient [W/m².K]
V	Nettovolumen (belüftetes Volumen) [m³]

Kleine lateinische Buchstaben

g	Gesamtenergiedurchlassgerad
h	Wärmeübergangskoeffizient/ Abstrahlungskoeffizient [W/(m ² .K)]
q	Sollwert des Luftvolumenstroms [m³/S]
S	Solar
t	Zeitspanne/ Zeit [h]

Griechische Buchstaben

- *α* Strahlungsabsorptionsgrad [-]
- *θ* Temperatur [°C]
- λ Wärmeleitfähigkeit [W/(m.K)]

η	Ausnutzungsgrad
--------	-----------------

φ Wärmestrom [[W]
----------------	-----

- ρ Rohdichte [kg/m³]
- ∠ Differenz

Indizes

а	Luft
dyn	dynamisch
е	Außen, äußere oder Außerhalb thermischer Hülle
eff	Effektiv
F	Rahmen
1	Innen, Intern, im Innen
kol	Luftkollektor
konv	konvektion
l	Licht
ор	Opak
S	Solar, durch Sonneneinstrahlung
sh	Verschatung
sol	Sollwert
Т	Transmission
tr	transparent
j,k,l	Laufvariabeln

Kurzfassung

Im Rahmen dieser Forschungsarbeit wurde zum einen eine rechnerische Bilanzierung für Luftkollektoren und Luftkollektorkonstruktionen als Beitrag zur DIN V 18599, zum anderen eine vereinfachte Bilanzierung zur Bewertung von Luftkollektoren und Luftkollektorkonstruktionen für den Anwender entwickelt.

Die detaillierte Bilanzierung von Luftkollektoren und Luftkollektor-Heizsystemen konnte in Anlehnung an bestehende Bilanzierungsansätze der DIN EN ISO 13789 (DIN EN ISO 13789 2008), der DIN EN ISO 13790 (DIN EN ISO 13790 2008) und deren Vorgängernorm DIN EN 832-1 (DIN EN 832-1 2003) sowie der Richtlinie des Fachverbandes Transparente Wärmedämmung (Werner J. Platzer 2000) in die Gedankenstruktur der DIN V 18599 implementiert und ausformuliert werden.

Die Bilanzierung erfolgt über Addition des neu eingeführten Terms Q_{s,kol} innerhalb der Bilanz solarer Gewinne über die Gebäudehülle Q_s, die aktuell aus der Summe solarer Gewinne opaker Hüllflächen Q_{s,op} und transparenter Hüllflächen gebildet wird. Q_{s,kol} stellt hierbei die Energiemenge dar, die durch Konduktion und Konvektion durch den Luftkollektor der jeweiligen thermischen Zone bzw. der Gebäudetechnik zur Verfügung gestellt wird.

Drei Typen von Luftkollektoren mit ihren jeweiligen Untergruppen werden baulich genutzt: Konduktions- und Konvektions- und TGA-Luftkollektoren. Im Rahmen der vorliegenden Arbeit wurden Bilanzierungsansätze für Konduktions- und Konvektions-Luftkollektoren entwickelt. Die Bilanzierbarkeit von energetischen Systemen beschränkt sich hierbei auf Systeme, die in einfache Wirkungsweisen zerlegbar sind. Die Wärmeübertragung per Konduktion muss immer kollektornah erfolgen.

Die vereinfachte Bilanzierung wurde mit Hilfe der thermisch-dynamischen Simulation parallel zur rechnerischen Bilanzierung entwickelt. Ausgegeben wurden die Energiegewinnmenge Q_{s.kol}, die je nach Nutzung aus konduktiven und konvektiven Anteilen besteht, der dynamische U-Wert U_{dyn}, der die Summe der Wärmeverluste und Gewinne pro Kelvin Temperaturdifferenz und Quadratmeter Bauteil beziffert, sowie der verschiedener Luftkollektorkonstruktionen. Ausnutzungsgrad Die Einschätzung beliebiger Konstruktionen ist anhand der Zahlentafeln für alle 15 TRY-Regionen Deutschlands im Anhang sowie der Umrechnung auf abweichende Kollektorausrichtungen möglich.

Luftkollektorkonstruktionen können, über die Heizperiode betrachtet, eine positive Energiebilanz ergo einen negativen dynamischen U-Wert aufweisen, obgleich der statische U-Wert, berechnet nach DIN EN ISO 6946, positiv und resultierend die statische Energiebilanz negativ ist.

Abstract

This research work is engaged in two basic questions. On the one hand, a detailed calculation to implement solar air collector systems in DIN V 18599, was developed. On the other hand a simple method was developed to evaluate a solar air collector system more easy to use for the user.

The **detailed calculation for solar air collector systems** has been implemented into the structure of the DIN V 18599, while using existing calculations from DIN EN ISO 13789 (DIN EN ISO 13789 2008), DIN EN ISO 13790 (DIN EN ISO 13790 2008), pre-norm DIN EN 832-1 (DIN EN 832-1 2003) and also the guidelines from the German department for transparent insulation (Werner J. Platzer 2000).

The gains of a solar air collector are considered, using a new term $Q_{s,col}$. This term is integrated into the existing terms for solar gains of the building envelope Q_s , which was by now split into solar gains of opaque and transparent surfaces. Thus $Q_{s,col}$ considers the solar gain of heat by conduction and convection from a solar air collector.

Solar air collectors where split into 3 sub-types, based on the physical effect used: conduction air collector, convection air collector and air collectors that work together with building services. In this study calculations for convective and conductive air collectors were developed. The calculation of such thermal systems is limited to systems with a simple mode of function, which is excluding air collector systems connected to building services.

A **simple method to evaluate a solar air collector** was developed using thermal dynamic simulation (TRNSYS). The outputs of the simulations where the solar gains $Q_{s,kol}$ consisting of convective and conductive gains (according to the mode of use), the dynamic U-value, which describes the energy balance of thermal losses and gains given in Watts per Kelvin temperature difference and square meter surface area and at least the performance ratio of the different air collector systems. To evaluate different air collector systems for different weather zones in Germany and collector orientations, diagrams and factors are given in this study for conversion.

During the heating period, some air collector systems have a positive balance of losses and gains, resulting in a negative dynamic U-value, while the static U-value (calculated according to DIN EN ISO 6946) is positive.

1 Forschungsfrage

Ein Luftkollektor besteht von innen nach außen beschrieben aus einem opaken Bauteil, einer Luftschicht und einer transparenten, transluszenten Deckschicht. Dieser Schichtaufbau ermöglicht die Nutzung des Treibhauseffektes, solare Gewinne werden über die Gebäudehülle generiert. Eine Kollektorkonstruktion kann auch anstatt einer transparenten Deckschicht eine dünne opake Schicht aufweisen. Gemäß DIN V 18599 fließen solare Gewinne über opake sowie über transparente Bauteile in die Bilanz eines Gebäudes bzw. einer Zone ein, die Bilanzierung von solaren Gewinnen über mehrschichtige, solare Gewinne generierende Bauteile wie Luftkollektoren, ist bislang nicht möglich.

Solare Luftheizsysteme und -konstruktionen finden aus energetischen Gründen daher selten Einsatz. Einerseits können die zu erzielenden solaren Gewinne im Rahmen der Nachweisführung bislang nicht in die Energiebilanz der Gebäude einbezogen werden, andererseits können Planer und Bauherren die zu erzielenden Gewinne während der Planungsphase nur schwer abschätzen. Fassaden mit Kollektorfunktion werden jedoch häufig aus rein architektonischen Gründen installiert, ohne dass die energetischen Potenziale genutzt bzw. bilanziert werden [Abb.1+2]. Es besteht Bedarf, Kollektoren in die Energiebilanz der Gebäude einzubeziehen.

Abb. 1-1: Apotheke des Universitätsspitals, Basel, Herzog & de Meuron, Foto: Tersluisen

Abb. 1-2: Fassadenkonstruktion eines Hotels, Hamburg, Foto: Tersluisen

Ziel der Untersuchungen ist es, Ansätze zur Verfügung zu stellen, die es ermöglichen, Kollektoren nach Konstruktion (Kollektor-Konstruktionstyp) und Nutzungsart (Kollektorsystem) zu bilanzieren. Im Rahmen der DIN V 18599 sollten Luftkollektoren zum einen detailliert bilanziell abgebildet werden, die Energiegewinne sollen in die Energiebedarfsrechnung der Gebäude einfließen können. Zum anderen gilt die Suche einer vereinfachten Bilanzierung, die es Bauherren und Architekten ermöglicht, die durch Luftkollektoren zu erzielenden Gewinne ohne detaillierte Berechnungen abschätzen zu können.

2 Forschungssystematik und -methode

Die Forschungsarbeit gliedert sich in eine Analyse-, Kategorisierungs-, Simulations- und Bilanzierungsphase.

Abbildung 2-1 Schema der Bearbeitungsphasen des Forschungsprojektes

Der Analyseteil besteht aus der Recherche vorhandener Bilanzierungsansätze in Normen, Forschungsprojekten, Produktdatenblättern sowie der Recherche realisierter Architekturen mit Kollektorfassaden.

Die im Rahmen der Recherche aufgenommenen Luftkollektorkonstruktionen und – systeme wurden in der Kategorisierungsphase hinsichtlich der Konstruktion und Wirkungsweisen zusammengefasst und in Kategorien eingeteilt, um kollektorspezifische Bilanzierungsansätze erarbeiten zu können.

Die detaillierte Bilanzierung soll als Beitrag zur DIN V 18599 die für ein Gebäude zu erzielenden solaren Gewinne durch Luftkollektorkonstruktionen abbilden, so dass diese in die Energiebilanz des Gebäudes einfließen können. Sie baut direkt auf den Erkenntnissen der Analyse und der Kategorisierung auf und basiert auf der Bilanzierungslogik der DIN V 18599 sowie der Bilanzierungsansätze der DIN V 18599-2 (DIN V 18599-2 2011).

Die vereinfachte Bilanzierung soll dem Anwender dazu dienen, die durch eine Luftkollektorkonstruktion zu erzielenden solaren Gewinne mit geringem Rechenaufwand abschätzen zu können. Sie wurde mit Hilfe der thermisch-dynamischen Simulation für die jeweiligen Kollektortypen entwickelt.

Zusätzlich zur detaillierten und vereinfachten Bilanzierung wurden dynamische U-Werte für verschiedene Luftkollektorkonstruktionen abgebildet, so dass die realitätsnahe Berechnung des Spezifischen Transmissionswärmeverlustes von Luftkollektoren möglich wird.

2.1 Detaillierte Bilanzierung

Auf Grundlage der DIN EN ISO 13789 (DIN EN ISO 13789 2008) und DIN EN ISO 13790 (DIN EN ISO 13790 2008a) wurden Bilanzierungsansätze, harmonisiert mit der Gedankenstruktur der DIN V 18599, erarbeitet, die solare Gewinne durch Luftkollektorkonstruktionen quantifizieren können. Mit den Bilanzierungsansätzen können alle Kollektortypen im Rahmen der Gebäudebilanzierung der DIN V 18599 bilanziert werden. Es musste festgelegt werden, in welcher Art und Weise die solaren Gewinne in die Bilanz der DIN V 18599 integriert werden sollen. Die Bilanzierung als Wärmequelle, hier als Energiemenge Q_{kol}, wurde daher neu entwickelt. Die limitierenden Faktoren wie Verschattungsgrad, Verschmutzungsgrad usw. wurden direkt aus der DIN V 18599 (DIN EN ISO 13789 2008) und DIN EN ISO 13790 (DIN EN ISO 13790 2008), wurde daher nicht gänzlich neu entwickelt, vielmehr überprüft und umgeschrieben.

2.2 Vereinfachte Bilanzierung

Ziel der vereinfachten Bilanzierung sollte sein, mit möglichst wenig Aufwand, also möglichst wenigen Parametern, eine Luftkollektorkonstruktion möglichst realitätsnah bewerten zu können. Daher wurde mit Hilfe der thermisch dynamischen Simulation eine Vielzahl an Einzelfaktoren, die in die detaillierte Bilanzierung einfließen, zusammengefasst und über den Nutzungsgrad der Konstruktion sowie den dynamischen U-Wert die Bewertbarkeit hergestellt. Die thermisch dynamische Simulation ist in der Lage, dynamisch wirkende Systeme, zu denen Luftkollektorkonstruktionen gehören, realitätsnah und bauphysikalisch korrekt im Kontext des Wetters und des Jahreszyklus abzubilden.

3 Recherche/ Stand der Technik

3.1 Luftkollektorprinzip

Luftkollektorkonstruktionen bestehen aus drei Funktionsschichten:

Abb. 3-1: Kollektoraufbau

Luftkollektoren mit transparenter oder transluszenter Deckschicht nutzen den Glashauseffekt. Solarstrahlung transmittiert dabei durch die transparente Schicht und wird an der Oberfläche der opaken Schicht absorbiert. Durch die Absorption erwärmt sich die Luft im Luftspalt, was zur Folge geringere Wärmeverluste aus dem Innenraum zum Luftspalt hin bedeutet. Da die transparente Schicht weniger durchlässig für Wärmestrahlen ist, und gleichermaßen der Luftspalt durch die transparente Schicht vor den Außenbedingungen geschützt wird, wird die Wärmeenergie im Luftspalt gehalten und wird, je nach U-Wert der transparenten Schicht, langsamer wieder an die Umgebung abgegeben.

Transparente Schicht

Die transparente Schicht besteht aus einer Glasscheibe, Mehr-Scheiben-Verglasungen, Polycarbonatplatten, Polycarbonatstegplatten, Plexiglas und ähnlichen Produkten. Auftreffende solare Strahlung wird zum Teil absorbiert, also in Wärmeenergie umgewandelt, zum Teil wird sie reflektiert und zum Teil kann sie durch die transparente transluszente bzw. Schicht transmittieren. Je höher hierbei der q-Wert (Gesamtenergiedurchlassgrad) ist, umso mehr Solarstrahlung wird durch diese Schicht hindurch gelassen. Eine Steigerung des g-Wertes geht in der Regel mit einer Steigerung des U-Wertes einher, was eine größere Wärmeabgabe an die Umgebung bedingt. Die transparente Schicht sollte bei Luftkollektoren einen möglichst hohen g-Wert bei möglichst geringem U-Wert aufweist.

Es gibt Kollektorsysteme, die keine transparente, sondern eine sehr dünne opake Schicht als Abdeckung nutzen. Dies kann beispielsweise ein dünnes Blech sein. Die Absorption erfolgt dann nicht im Luftspalt, sondern auf der Fassadenoberfläche. Der Kollektor nutz in dem Fall nicht den Treibhauseffekt. Die Wärmeenergie gelangt hier durch Konduktion in den geschützten Luftspalt, die Energieausbeute ist bei opaken Luftkollektoren daher geringer als bei transparenten.

Luftschicht

Luft ist ein schlechter Wärmeleiter, eignet sich daher gut, um vor Wärmeverlusten zu schützen. Luft kann bereits bei geringer Energiezufuhr nutzbare Temperaturen bereitstellen, kann jedoch die Energie denkbar schlecht speichern. Die erwärmte Luft im Kollektor sollte daher, solange Solarstrahlung vorhanden ist, nutzbar gemacht werden.

Opake Schicht

An der Oberfläche der opaken Schicht kann Solarenergie absorbiert und in Wärme umgewandelt werden. Diese Wärme wird zum Teil an den Luftspalt abgegeben und zum Teil vom Bauteil aufgenommen. Durch Konduktion gelangt diese Wärme auch in den Innenraum, der an den Luftkollektor grenzt. Je höher der U-Wert des opaken Bauteils ist, umso größer ist der Wärmetransport von außen nach innen, wenn die Temperatur im Luftspalt höher als die im Innenraum ist. Je höher der U-Wert des opaken Bauteils, umso höher ist der Wärmetransport von innen nach außen, wenn die Temperatur im Luftspalt geringer ist als die im Innenraum.

3.2 Literaturrecherche

Die erzeugte Wärme durch einen Konduktionsluftkollektor und der Anteil der transmittierten Wärme durch seine opake Schicht sind durch einfache bauphysikalische Formeln bilanzierbar.

Ein Konvektionsluftkollektor wird dagegen durch komplexe thermische Formeln bilanziert. In verschiedenen Literaturen sind Konvektionsluftkollektoren und die Formeln zur Berechnung des Wärmeeintrags und des Wirkungsgrades beschrieben.

In Abb. 3-2 ist ein bspw. Kollektor abgebildet, der mehrere überlappende Glasschichten hat. Selcuk (Selçuk 1971) hat ein nummerisch, thermisches Berechnungsverfahren für Luftkollektoren mit überlappenden Glasschichten (Abb. 3-2) entwickelt.

Abb. 3-3 zeigt einen Luftkollektor mit Metallabsorber. Sowohl der Kollektor mit den überlappenden Schichten, als auch andere spezielle Kollektoren bspw. mit Metallabsorbern müssen in der Regel aufwendig nummerisch berechnet werden.

Abb. 3-2: Luftkollektor mit überlappend Glass (VANITA THAKKAR)

Abb. 3-3: Luftkollektor mit Metallabsorber (VANITA THAKKAR)

Eine nummerische Berechnungsmethode für Luftkollektoren mit Metallabsorbern (Abb. 3-3) bieten Chiou et al (Chiou, El-Wakil, Duffie 1965), Hamid und Beckman (Hamid, Beckman 1971) und Neeper (Neeper 1979) an. Hollands und Shewen (Hollands, K. G. T., Shewen 1981) haben außerdem den Einfluss von Luftströmungsgeometrien auf den Wirkungsgrad des Luftkollektors und den Wärmeübergangskoeffizienten innerhalb des Kollektors untersucht.

Ein Konvektionsluftkollektor, der als Gebäudebauteil verwendet werden kann und für die Forschungsfrage relevant ist, hat einen einfachen Aufbau. Sie besteht aus einer opaken, einer transparenten und einer zwischenliegenden Luftschicht (vgl. Abb. 5-1- Kollektor-Typ-2). Die Berechnung der erzeugten Wärme durch einen einfachen Luftkollektor wird bspw. in Duffie und Beckman (Duffie, Beckman 2013) umfangreich beschrieben.

Zur Implementierung des Wärmeeintrags des Konvektionsluftkollektors in die DIN V 18599-2 (DIN V 18599-2 2011b) muss die Bilanzierung monatsweise erfolgen. In der Richtlinie des Fachverbandes Transparente Wärmedämmung (Werner J. Platzer 2000a) und der DIN EN 832-1 (DIN EN 832-1 2003) (ersetzt durch DIN EN ISO 13790 (DIN EN ISO 13790 2008a)) wird hierfür eine Methode angegeben, an die angeknüpft werden kann.

3.3 Projektrecherche

Im Rahmen der Analysephase wurden realisierte Architekturen mit transparenter oder Gebäudehülle untersucht. Es wurden 22 Wohngebäude transluszenter mit Hüllkonstruktionen, die Kollektorwirkung aufweisen und diese in ein energetisches Konzept einbinden, analysiert. Bei den untersuchten Nicht-Wohngebäuden wird die Kollektorwirkung bei 12 Projekten energetisch eingebunden. Es gibt eine Fülle Projekte, die aus rein architektonischen Gründen Fassadenkonstruktionen mit Kollektorwirkungen aufweisen, unsere Liste könnte beliebig erweitert werden (Projektliste siehe Anlage I). Einige der Architekten, die Kollektorhüllflächen aus energetischen Gründen planen, wie Ruedi Stutz, Werner Grosse oder Günter Pfeifer, haben weitere Luftkollektorprojekte in ihrem Werk, die in der vorliegenden Forschungsarbeit jedoch nicht explizit untersucht wurden.

Die Analyse zeigt, dass Kollektorkonstruktionen sowohl bei der Bestandssanierung, wie im Altenteilhaus von Bruno Maurer, als auch im Neubaubereich, wie im Wohnhaus der Kinderreitschule Weilimdorf von Werner Grosse, genutzt werden. Bei Holzbauten zeigt sich, dass die transparente Schicht, wie bspw. beim Haus der Bauern der Werkgruppe Lahr, als konstruktiver Wetterschutz dient, der die tatsächliche Materialität, das Holz, nach außen hin zeigt. Die Kollektorwirkung steht bei diesem Projekt im Hintergrund. Das Haus der Zukunft von Architheke AG hingegen nutzt die transparente Schicht zwar als konstruktiven Schutz des vorgefertigten Holzbaus, baut jedoch gleichzeitig mit der Lucido[®]-Fassade, die eine sich selbst verschattende, profillierte Absorberschicht aus Holz aufweist, eine extrem wirksame Luftkollektorkonstruktion und bindet diese ins energetische Konzept ein.

Die untersuchten Konstruktionen variieren bezüglich der U-Werte der Einzelschichten. Der U-Wert der transparenten bzw. transluszenten Schicht liegt bei den untersuchten Projekten zwischen 0,7 und 5,68 W/(m²•K). Je geringer der U-Wert, desto geringer ist in der Regel der Gesamtenergiedurchlass (g-Wert) und desto höher sind die Kosten der Konstruktion. Die U-Werte der opaken Bauteilschicht variieren bei den untersuchten Projekten stark. Im Bereich der Altbausanierung wurde eine Spanne von Konstruktionen realisiert, bei denen die Altbau-Wandkonstruktion

unsaniert und unverändert durch eine transparente Schicht mit Luftspalt ergänzt,
 minimal gedämmt und mit einer transparenten Schicht mit Luftspalt ergänzt,
 oder im Passivhausstandard gedämmt sowie mit einer transparenten Schicht mit Luftspalt ergänzt wurde. Im Neubaubereich gibt es Konstruktionen, die bis zum Passivhausstandard mit einem statischen U-Wert < 1,0 W/(m²•K) reichen.

Drei verschiedene Wirkungs- bzw. Nutzungsweisen der solaren Gewinne im Gesamtsystem sind zu erkennen: die konduktive Nutzung (Transmission, abhängig vom

Widerstand der opaken Wandschicht), die konvektive Nutzung (Direktnutzung durch Zuluft), und die technische Nutzung (Nutzung der Energie als Input für die Haustechnik).

Kollektorhüllen als verglaste Vorhangfassaden, die aus rein architektonischen Gründen konstruiert wurden, sorgen in der Regel für konduktiv genutzte solare Gewinne.

Das Projekt "Seniorenwohnen Solingen" von Pfeifer Kuhn Architekten zeigt mit einem einfach konstruierten Luftkollektor die rein konduktive Nutzung der solaren Wärmeenergie, explizit als Energiegewinnfassade konzipiert. Der Kollektor versorgt die angrenzenden Räume direkt mit Wärme bzw. reduziert deren Verluste.

Der Großteil der Projekte, die die Kollektorhülle energetisch in ein Konzept einbinden, weisen allerdings Überlagerungen mehrerer Nutzungen der Gewinne auf.

So das "Wohn- und Atelierhaus Lang-Kröll" von Florian Nagler Architetken, das eine simple, konduktive sowie konvektive Nutzung der über die Kollektorhülle generierten Wärmeenergie zeigt. Die Außenwand des Hauses besteht im Bereich des Kollektors aus gedämmten Holz-Fertigteil-Elementen, einem Luftspalt und einer abschließenden Polycarbonatstegplatte. Die im Kollektor des unteren Wohngeschosses erzeugte Wärmeenergie versorgt konduktiv die an den Kollektor angrenzenden Wohnräume. Die im Kollektor aufsteigende warme Luft kann zudem, durch manuelles Betätigen einer Klappe am Kopfpunkt der Giebelseiten in das Atelier-Dachgeschoss ohne technische Unterstützung aufsteigen und wirkt so wie eine passive Warmluftheizung. Dieses Systems trennt die Wärmeleitung im Bereich des Wohngeschosses, das vom Kollektor allseitig umschlossen ist, und die Konvektion in das Dachgeschoss, das keinen direkten Kontakt zum Kollektor hat.

Hegger Hegger Schleiff drehen beim "Gründerzentrum für ökologische Bauberufe" den konvektiven Wärmestrom um und ziehen die solar erwärmte Luft am Fußpunkt des Kollektors mit technischer Hilfe ab, um diese im Erdgeschoss in die Werkräume einzubringen.

Beim "Altenteilhaus in Uttenweiler", der Sanierung eines 1950er-Jahre Wohngebäudes, nutzt Bruno Maurer die durch die Kollektorhülle gesammelte, solare Wärme, indem er sie der Gebäudetechnik zuführt. Die im Kollektor erwärmte Luft wird im Fristkanal gesammelt. Ein Wärmetauscher überträgt einen Teil der Energie von Luft auf Wasser, um das Brauchwasser zu erhitzen. Der verbleibende Teil wird konvektiv in die Wohnräume eingebracht. Die konduktive Nutzung findet auf Grund des relativ geringen U-Wertes der mit 26 cm Wärmedämmung ergänzten 25–36 cm Mauerwerkswand nur im geringen Umfang statt.

4 Anwedungsbereich

Die vorliegende Forschungsarbeit leistet einen Beitrag zur Bilanzierbarkeit einfach konstruierter Luftkollektorkonstruktionen und -heizsysteme. Konstruktionen und Systeme, die auf klar abgrenzbaren Prinzipien beruhen, können mit Hilfe der Ergebnisse der Arbeit bilanziert werden.

Aus der Analyse gingen folgende Kollektortypen mit ihren jeweiligen Nutzungsvarianten hervor.

Typ 1: Konduktionsluftkollektoren

- Typ 1.1: Konduktionsluftkollektor (transparent)
- Typ 1.2: Konduktionsluftkollektor (opak)

Typ 2: Konvektionsluftkollektoren

Typ 2.1: Raumluft-Konvektionsluftkollektoren

- Typ 2.1.1: Raumluft-Konvektionsluftkollektor (transparent)
- Typ 2.1.2: Raumluft-Konvektionsluftkollektor (opak)
- Typ 2.2: Raumluft-Konvektionskollektoren mit 2-Zonen-Nutzung
- Typ 2.2.1: Raumluft-Konvektionsluftkollektor mit 2-Zonen-Nutzung (transparent)
- Typ 2.2.2: Raumluft-Konvektionsluftkollektor mit 2-Zonen-Nutzung (opak)

Typ 2.3: Außenluft-Konvektionsluftkollektoren

- Typ 2.3.1: Außenluft-Konvektionsluftkollektor (transparent)
- Typ 2.3.2: Außenluft-Konvektionsluftkollektor (opak)

Typ 2.4: Außenluft-Konvektionsluftkollektoren mit 2-Zonen-Nutzung

- Typ 2.4.1: Außenluft-Konvektionsluftkollektor mit 2-Zonen-Nutzung (transparent)
- Typ 2.4.2: Außenluft-Konvektionsluftkollektor mit 2-Zonen-Nutzung (opak)

Typ 3: TGA-Luftkollektoren

- Typ 3.1: TGA-Luftkollektor (transparent)
- Typ 3.2: TGA-Luftkollektor (opak)

Abb. 4-1 Kollektortypen und deren jeweilige Nutzungsvariante

Luftkollektoren, deren Wirkungsweisen im energetischen Gesamtsystem den dargestellten Grundprinzipien entsprechen, können bilanziert werden.

Für die Anwendung der Bilanzierungen gelten folgende Restriktionen:

- Der Luftstrom des Kollektors verläuft parallel zur Bauteiloberfläche.

 Bei konvektiv genutzten Luftkollektoren muss der Luftstrom des Kollektors zur zu beheizenden Zone unterbrochen werden, wenn die Luftspalttemperatur geringer als die Raumtemperatur ist. Andernfalls würde der Raum gekühlt werden.

- Bei konvektiv genutzten Luftkollektoren muss der Luftstrom zur zu beheizenden Zone während der Kühlperiode unterbrochen sein.

–Bei konvektiv genutzten Luftkollektoren muss ein idealerweise konstanter Luftstrom zur zu beheizenden Zone gewährleistet werden, sobald die Luftspalttemperatur über der Raumtemperatur liegt.

- Bei konvektiv genutzten Luftkollektoren muss eine möglichst hohe

Luftundurchlässigkeit der Deckschicht sowie der Gebäudehülle gewährleistet werden, damit der überwiegende Teil der zu konditionierenden Raumluft durch den Kollektor in den Raum strömen kann.

– Die Luftzufuhr bei Außenluft-Kollektoren sollte temperaturgeführt sowie nutzerabhängig von der zu beheizenden Zone aus steuerbar sein. Auf die temperaturgeführte Steuerung kann verzichtet werden, wenn es sich bei der zu heizenden Zone um temporär genutzte Räume handelt.

- Luftkollektoren müssen während der Kühlperiode entlüftet werden.

– Die Luftspaltbreite soll zwischen 1,5 cm und 10 cm liegen. In breiteren Luftspalten kann es zu punktuellen Verwirbelungen orthogonal zur Bauteiloberfläche kommen, da nahe der Absorptionsschicht Auftrieb, nahe der transparenten Deckschicht aufgrund der Abkühlung Abtrieb entsteht. In diesem Fall wäre eine detaillierte Bauteilsimulation erforderlich.

Mehrgeschossige Kollektoren können bilanziert werden, sofern sie den dargestellten Kollektortypen und Wirkungsweisen entsprechen. Mehrgeschossige Luftkollektoren generieren auf Grund der thermischen Eigenschaften im oberen Kollektorteil höhere Temperaturen als im unteren. Die Ergebnisse der Bilanzierung weisen geringere Gewinne aus, als real zu erzielen sind. Um eine realitätsnahe Bewertung zu erzielen, wäre eine detaillierte Bauteil- und Gebäudesimulation erforderlich.

5 Kategorisierung nach Wirkprinzipien

Aus der Projekt- sowie Literaturrecherche konnten drei Typen nach bauphysikalischen Wirkweisen abgeleitet werden, die alle realen Luftkollektorkonstruktionen abbilden können.

Abb. 5-1 Kategorisierung der recherchierten Luftkollektortzypen

Der Luftkollektortyp, der am häufigsten Anwendung findet, überträgt die generierte Wärme primär über Wärmeleitung. Alle gebauten Projekte, die aus rein architektonischen Gründen eine Luftkollektorhülle aufweisen, können diesem Typ zugeordnet werden. Der U-Wert der transparenten Schicht ist in der Regel relativ hoch, der U-Wert der opaken Schicht dementsprechend niedrig.

Der zweite Luftkollektortyp überträgt die Energie primär konvektiv und sekundär konduktiv. Zu diesem Typ zählen beispielsweise die Trombewandsysteme der 70er Jahre – wobei unter den untersuchten zeitgemäßen Architekturen sich als tatsächliches Trombewandsystem alleinig das "Wohn- und Atelierhaus Lang-Kröll" von Florian Nagler Architekten fand, bei dem über eine mechanisch zu bedienende Klappe die Warmluft in den Dachraum übertragen wird. Weitere Projekte, die diesem Typ zugeordnet werden können, weisen eine Verbindung zwischen Luftspalt der Kollektoren und den Lufträumen auf, eine Steuerung der Konvektion findet allein durch die Thermik statt. Als Beispiel kann das "Patchworkhaus" von Pfeifer Roser Kuhn dienen.

Beim dritten Typ werden die solaren Gewinne der Luftkollektorhülle an die Haustechnik gekoppelt. Die passiven Energiegewinne werden so aktiv auf das Heizsystem oder die Warmwasserbereitung übertragen. Diesem Typ sind ausschließlich Projekte zuzuordnen, die aus energetischen Gründen mit einer Luftkollektorhülle ausgestattet worden sind. Als Beispiel kann das Luftkollektorhaus von Bruno Maurer dienen. Architekturen, bei denen der dritte Typ zum Einsatz kommt, also die Energiegewinne durch die TGA genutzt werden, sind häufig Mischsysteme. Beim Projekt "Solarhaus Hehli vom Dach" von Hans Ruedi Stutz beispielsweise wird die solare Energie aus dem Dach-Luftkollektor einerseits zur Warmwasserbereitung genutzt, andererseits an ein Hypokausten-Murokausten-System gekoppelt, bei dem die Wärmeübertragung konduktiv erfolgt. Alle realisierte Architekturen können jedoch eindeutig einer Haupwirkweise und somit einem Kollektortyp zugeordnet werden.

6 Bilanzierungsansätze

Die Quellenrecherche (s. 2.3.) zeigte vereinzelte Bilanzierungsansätze auf, die zwar keine direkt übertragbaren Bilanzierungen beinhalten, an die jedoch inhaltlich strukturell angeknüpft werden konnte. Die relevantesten Bilanzierungsansätze werden folgend vorgestellt, die Bilanzierungsmöglichkeiten in der DIN V 18599, vor allem die mögliche Verortung, werden beschrieben.

6.1 Kollektorbilanzierungen in Normen und Verweisen

Nach DIN V 18599-2 (DIN V 18599-2:2011-12) können Luftkollektorkonstruktionen und – heizsysteme bislang nicht bilanziert werden. Die DIN enthält unter Punkt "6.4.2 Solare Wärmeeinträge über opake Bauteile" jedoch folgenden Verweis: "Weitere solare Wärmeeinträge über belüftete Solarwände (Trombewände) oder über belüftete Bauteile der Gebäudehülle (dynamische Wärmedämmung) sind DIN EN ISO 13790 zu entnehmen."

Die Kollektoren werden durch die wirksame Kollektorfläche A_{sol,k} beschrieben, die schlussendlich eine abstrakte Fläche ist, die für den Wärmegewinn reduzierende Faktoren berücksichtigt.

Die wirksame Kollektorfläche opaker Bauteile mit transparenter Wärmedämmung (DIN EN ISO 13790:2008-09 | E.12) berücksichtigt ausgehend von der tatsächlichen realen Gesamtfläche des Kollektorbauteils

- einen Abminderungsfaktor für eine konstruktive, bewegliche Verschattung,
- einen Abminderungsfaktor, der den Rahmenflächenanteil beziffert,
- den Gesamt-U-Wert des Bauteils zwischen Innenraum und Außenumgebung in Proportion zum U-Wert des Bauteils von der Oberfläche, die dem transparenten Dämmprodukt zugewandt ist, nach außen,
- den für die Ausrichtung des Bauteils relevanten, wirksamen Gesamtenergiedurchlassgrad der transparenten Dämmung,
- den Gesamtenergiedurchlassgrad der Dämmung sowie
- den Absorptionsgrad der Oberfläche, die die Strahlung aufnimmt.

Die DIN EN ISO 13790:2008-09 bietet für Trombewandkonstruktionen, also konvektiv genutzte Luftkollektoren, unter "11.3.2 Wärmestrom durch solare Einträge je Bauteil" Bilanzierungen an.

Abb. 6-1. Weg des Luftstroms in einer belüfteten Solarwand aus: DIN EN ISO 13790:2008, Bild E.2, S.129.

Die Zerlegung der Kollektorwandkonstruktion in einzelne Widerstände bildet das Verständnis der bauphysikalischen Wirkungsweise der Konstruktionen ab. Sie werden nach DIN EN ISO 13790:2008-09 in U_e und U_i aufgeteilt, wobei U_e den U-Wert von außen bis zur Mittelachse der Luftschicht und U_i den U-Wert von innen bis zur Mittelachse der Luftschicht den U-Wert der Gesamtkonstruktion. Gedanklich bildet der Wert U_e den Widerstand in Zeiten solarer Gewinne vom Luftspalt nach außen, der Wert U_i den Widerstand in Zeiten ausbleibender solarer Gewinne von innen nach außen ab.

Die wirksame Kollektorfläche belüfteter Solarwände mit opaker Deckschicht (DIN EN ISO 13790:2008-09 | E.15), auf der die Absorption stattfindet und durch die hindurch die Wärmeenergie an den Luftspalt geleitet wird, berücksichtigt ausgehend von der tatsächlichen realen Fläche der belüfteten Solarwand

- den Absorptionsgrad der Oberfläche, die die Strahlung aufnimmt, also der Oberfläche der opaken Deckschicht, der den Grad der Absorption beziffert,
- einen Abminderungsfaktor für eine konstruktive, bewegliche Verschattung,
- einen Abminderungsfaktor für den Rahmen,
- den U-Wert der Gesamtkonstruktion,
- einen flächenbezogenen Transferkoeffizienten, der das Verhältnis des äußeren (opake Deckschicht plus halbe Luftschicht) und inneren U-Wertes (opakes Bauteil plus halbe Luftschicht) berücksichtigt,
- den inneren U-Wert (opakes Bauteil plus halbe Luftschicht), der den Widerstand zum Raum hin beziffert,
- die volumenbezogene Speicherfähigkeit der Luft,
- den Luftvolumenstrom, der im Luftspalt eingestellt wird, in Proportion zur Gesamtfläche des Kollektors
- das Verhältnis der Gesamtsonnenstrahlung auf das Bauteil bei offenem Luftspalt zur Gesamtsonnenstrahlung über den gesamten Berechnungsschritt

Die wirksame Kollektorfläche belüfteter Solarwände mit transparenter Deckschicht (DIN EN ISO 13790:2008-09 | E.18), bei denen die Absorption auf der Oberfläche der opaken Wandschicht angrenzend an den geschützten Luftspalt stattfindet, berücksichtigt ausgehend von der tatsächlichen realen Fläche der belüfteten Solarwand:

- den Absorptionskoeffizienten der Oberfläche hinter dem Luftspalt, der Oberfläche der opaken Wandschicht, der den Grad der Absorption beziffert,
- den Abminderungsfaktor für eine konstruktive, bewegliche Verschattung
- einen Abminderungsfaktor für die Konstruktion bzw. den Rahmen,
- den Gesamtenergiedurchlassgrad der transparenten Schicht,
- den U-Wert der gesamten Wandkonstruktion,
- den inneren U-Wert (opakes Bauteil plus halbe Luftschicht)
- den äußeren U-Wert (transparentes Bauteil plus halbe Luftschicht)
- die volumenbezogene Speicherfähigkeit der Luft,
- den Luftvolumenstrom, der im Luftspalt eingestellt wird, in Proportion zur Gesamtfläche des Kollektors
- das Verhältnis der Gesamtsonnenstrahlung auf das Bauteil bei offenem Luftspalt zur Gesamtsonnenstrahlung über den gesamten Berechnungsschritt.

Die Berechnung der wirksamen Kollektorfläche folgt prinzipiell dem tatsächlichen Energiefluss innerhalb der Konstruktion. Die Teilwiderstände bzw. U-Werte werden angesetzt, um die Richtung des Wärmeflusses vom Luftspalt aus abzubilden. Die Reduktion der tatsächlichen Kollektorfläche ist allerdings schwierig nachzuvollziehen, da es sich tatsächlich um die Reduktion der Solarstrahlung (Gesamtenergiedurchlassgrad / Verschattung / Absorptionsgrad usw.) oder der transportierten Wärme (U-Wert) handelt, nicht jedoch um eine geringere Kollektorfläche. Die Bilanzierung mit Hilfe einer wirksamen Kollektorfläche scheint nicht praktikabel.

Die Bilanzierung generell erfolgt über den zusätzlichen Wärmestrom $\Phi_{sol, k}$, der den solaren Gewinn der Kollektor-Wand beziffert. Die Bilanz wird gebildet aus dem Produkt eines Verschattungsfaktors für Verschattung der Kollektorfläche durch Gebäude, Bäume usw., der so genannten wirksamen Kollektorfläche und der Solarstrahlung, abzüglich der Strahlungsverluste des Bauteils an den Himmel. Der zusätzliche Wärmestrom $\Phi_{sol, k}$ multipliziert mit der Zeit t ergäbe demnach die Menge der solaren Gewinne $Q_{sol,k}$, die wiederum in DIN V 18599 eingebunden werden könnte. Die Beschreibung des Kollektors erfolgt auch hier über die wirksame Kollektorfläche.

Die Bilanzierungen gelten bei den Trombewandkonstruktionen für eine Dicke des Luftspalts zwischen 15 mm und 100 mm, was mit erhöhter Verwirbelung bei breiter werden Luftspalten begründet werden kann und nachvollziehbar ist. Zudem gilt einschränkend, dass "der Luftstrom [der Kollektorkonstruktion] automatisch unterbrochen werden muss, wenn der Luftspalt kälter als der beheizte Raum ist" und dass "der Luftvolumenstrom automatisch auf einen konstanten Wert eingestellt wird, wenn der Luftspalt wärmer als der beheizte Raum ist". Dies definiert Anforderungen an die Ausführung des Bauteils. Es muss also eine passive oder aktive Steuerung und Regelung der Luftströme vorliegen, um die Effizienz zu gewährleisten und um Überhitzung sowie den ungewünschten Energieentzug zu vermeiden.

Die DIN EN ISO 13790:2008-09 bietet weiterhin eine Bilanzierungsmöglichkeit für "belüftete Bauteile der Gebäudehülle" (E.5) an.

Die Bilanzierung erfolgt "mithilfe eines äquivalenten [passiven] Wärmetauschers zwischen Ab- und Zuluft", dessen Wirkung durch den Nutzungsgrad ausgedrückt wird. Der Nutzungsgrad scheint uns ein effektiver Parameter, um Kollektoren allgemein abzubilden. Auch hier wird der Kollektor selber durch die wirksame Kollektorfläche beschrieben. Die Gedankenstruktur entspricht der oben beschriebenen.

Voraussetzung für die Bilanzierung ist, dass der Luftstrom parallel zur Oberfläche der Gebäudehülle verläuft, die Dicke des Luftspaltes zwischen 15 mm und 100 mm liegt, die Gebäudehülle relativ luftundurchlässig ist, um zu gewähren, dass der überwiegende Teil der Raum-Zuluft durch den Kollektor vorerwärmt werden kann. Zudem sollen die Luft-Einlassöffnungen geregelt sein.

Festzuhalten ist, dass weder bei der transparenten Wärmedämmung, noch bei der transparenten Trombewand oder dem transparenten belüfteten Bauteil der Gebäudehülle ein Verschmutzungsfaktor berücksichtigt wird. Zudem fällt auf, dass entgegen unserer Annahme, die Speicherfähigkeit der opaken Wandschicht in den vorliegenden Bilanzierungen keine Rolle spielt.

6.2 Implementierung einer Bilanzierung in der DIN V 18599

Eine Kollektor-Bilanzierung in der DIN V 18599 zu platzieren, wäre auf verschiedene Weisen möglich.

Abb. 6-3 zeigt das Bilanzierungsprinzip der DIN V 18599 mit deren Heizwärme- und Kühlbedarf einer Gebäudezone. Der Heizwärmebedarf einer Zone wird aus der

Überlagerung von Wärmesenken (Wärmeverluste) und Wärmequellen (Wärmegewinne) gebildet. Die Wärmequellen werden mit einem Nutzungsgrad, der kleiner als 1 ist, multipliziert, da sie in der Regel nicht zu 100% nutzbar sind – ein Beispiel wäre das Weglüften solarer Gewinne auf Grund überhöhter, unbehaglicher Raumtemperaturen.

Abb. 6-3: Berechnungsprinzip des Heiz- und Kühlbedarfs einer Gebäudezone (DIN V 18599-2 2011b)

Vier grundsätzliche Ansätze der Bilanzierung innerhalb des Heizwärmebedarfes sind denkbar: zum einen die Bilanzierung über einen dynamischen, äquivalenten U-Wert, zum anderen über eine zusätzliche Wärmemenge. Beide Bilanzierungen wären sowohl auf Seiten der Wärmesenken (Q_{sink}) als reduzierender Wert, als auch auf Seiten der Wärmequellen (Q_{source}) als erhöhender Wert denkbar. Anlage IV zeigt die möglichen Bilanzierungsstrategien innerhalb der DIN V 18599.

Die Bilanzierung auf Seiten der Wärmesenken, also auf der Verlustseite, könnte generell innerhalb der Transmissionswärmesenken und innerhalb der Lüftungswärmesenken erfolgen. Beides könnte sowohl durch eine zusätzliche Wärmemenge als auch durch einen konstruktionsspezifischen, durchschnittlichen U-Wert eingebracht werden. Der konstruktionsspezifische, durchschnittliche U-Wert wäre allerdings gerade bei der konvektiven Nutzung der solaren Energie nur ein Vehikel, um die eingebrachte Energiemenge zu bilanzieren.

Die Bilanzierung über einen äquivalenten U-Wert, der Verluste und Gewinne der Luftkollektorkonstruktionen abbildet, erscheint gerade vor dem Hintergrund der EnEV, in der die Transmissionswärmeverluste von Gebäuden begrenzt werden, prinzipiell sinnvoll. An die Einhaltung der in der EnEV vorgegebenen H'_T-Werte sind Förderungen wie die der

KfW geknüpft, die aktuell bei Luftkollektorgebäuden, die wie alle anderen Gebäude rein durch statische U-Werte beschrieben werden, nicht gewährt werden können. Generell wäre die Bilanz über den U-Wert, mindestens zum Abbilden der Konduktionsgewinne, sehr sinnvoll.

Die Bilanzierung der Gewinne als verlustreduzierender Faktor erscheint uns jedoch nicht schlüssig bzw. nachvollziehbar, da es sich grundlegend um solare Gewinne handelt, also eine durch die Konstruktion hinzugefügte Energiemenge. Daher wurde folgend die Bilanzierung als Wärmemenge auf Seiten der Gewinne entwickelt und zusätzlich, im Rahmen der vereinfachten Bilanzierung, der dynamische, äquivalente U-Wert ausgegeben.

7 Rechnerische Bilanzierung harmonisiert mit DIN V 18599

Der entwickelte Bilanzierungsansatz für Luftkollektoren basiert auf Ansätzen der DIN EN ISO 13790 (DIN EN ISO 13790 2008) und der Richtlinie des Fachverbandes Transparente Wärmedämmung e.V. (Werner J. Platzer 2000) und harmonisiert mit der Denkstruktur der DIN V 18599.

Aktuell werden im Rahmen der Bilanzierung nach DIN V 18599 die solaren Gewinne über die Gebäudehülle durch die Summe solarer Wärmegewinne durch transparente Bauteile (Verglasungen) und opake Bauteile (Außenwände und Dachflächen) gebildet. Luftkollektoren gehören prinzipiell zu den opaken Bauteilen, ähneln in der Wirkweise jedoch transparenten Bauteilen mit dahinter liegender absorbierender Schicht. Daher schlagen wir vor, die solaren Gewinne durch Luftkollektorkonstruktionen Q_{S,kol} innerhalb der solaren Gewinne einer Zone als separaten Term zu addieren, um die Wirkweisen klar trennen zu können.

Luftkollektoren übertragen Wärme durch Konduktion, durch Konvektion oder mit Hilfe an den Luftspalt thermisch angeschlossener Gebäudetechnik. Daher ist die differenzierte Bilanzierung gemäß der vorherrschenden Wärmeübertragungsart notwendig. Die Energiegewinnung ist sowohl mit einer transparenten bzw. transluszenten Deckschicht, als auch mit einer dünnen opaken Deckschicht möglich, daher erfolgt eine weitere Unterteilung hinsichtlich der Art der vorzufindenden Deckschicht.

7.1 Konduktionsluftkollektoren (Typ 1)

Der Konduktionsluftkollektor ist ein Bauteil mit drei verschiedenen Schichten: einer transparenten Schicht, einer Luftschicht und einer opaken Schicht. Die im Luftkollektor erzeugte Wärme wird bei dieser Art des Kollektors durch Wärmeleitung durch die opake Schicht hindurch zum beheizten Raum geleitet. Konduktionsluftkollektoren können zwei verschiedene Schichtfolgen aufweisen: transparente Deckschicht, Luftschicht und opake Wandschicht oder opake Deckschicht, Luftschicht und opake Wandschicht.

7.1.1 Konduktionsluftkollektor (transparent)

Bei Luftkollektoren mit transparenter oder transluszenter Außenschicht kann ein hoher Anteil der auf den Kollektor eintreffenden Solarstrahlung genutzt werden, die Wärmeenergie wird durch Transmission (Konduktion) durch das opake Bauteil hindurch an den Innenraum übertragen (siehe Abb. 7-1).

Abb. 7-1: Konduktionsluftkollektor mit transparenter Außenschicht

Prinzipiell und vereinfacht betrachtet setzt sich die Bilanz der solaren Einträge eines Konduktions-Luftkollektors wie folgt zusammen:

Abb. 7-2 Bilanz der Wärmeeinträge durch einen Konduktionsluftkollektor

Zu den Abminderungsfaktoren gehören die Abminderungen durch außen liegende Hindernisse, Verschattung innerhalb der Kollektorkonstruktion, nicht senkrechten Strahlungseinfall und Verschmutzung. Der Gesamtenergiedurchlassgrad gibt an, welcher Anteil von Sonneneinstrahlung durchgelassen werden kann. Der Absorptionsgrad der Oberfläche der opaken Bauteilschicht gibt an, wie viel der auf die Oberfläche auftreffenden Solarstrahlung schlussendlich absorbiert werden kann. Die Wärmeenergie, die im Luftspalt entsteht, wird, abhängig von den Widerständen nach außen sowie nach innen hin, durch das opake Bauteil hindurch an den Innenraum weitergeleitet. Abgezogen werden muss schlussendlich noch der Anteil eines Abstrahlungsverlustes.

Detailliert berechnet bedeutet dies für den Wärmeeintrag durch Transmission folgende Gleichung:

$$Q_{S,kol} = \left(\left(I_{S} F_{sh,ob,k} F_{sh} F_{W} F_{S} \right) \left(F_{F} A_{kol} \right) g\alpha \left(\frac{U_{kol}}{U_{kol,tr,e}} \right) - \left(F_{r,k} \Phi_{r,k} \right) \right) t$$
7.2

mit:	$Q_{S,kol}$	die Summe der Wärmeeinträge durch solare Einstrahlung auf die Kollektorfläche
	I _S	die mittlere solare Einstrahlung während eines Monats nach DIN V 18599-10 (DIN V 18599-10 2011)
	$F_{sh,ob,k}$	der Verschattungsfaktor durch außen liegende Hindernisse für die Kollektorfläche
	F_{sh}	der Verschattungsfaktor innerhalb der Kollektorkonstruktion
	F _w	Abminderungsfaktor wegen des nicht senkrechten Strahlungseinfalls; FW=0,9 (DIN V 18599-2 2011)
	Fs	Abminderungsfaktor infolge von Verschmutzung nach DIN V 18599-10 (DIN V 18599-10 2011)
	F _F	Abminderungsfaktor für Rahmen
	A _{kol}	die Gesamtfläche des Kollektors
	g	Absorptionskoeffizient der Oberfläche, die die Sonnenstrahlung aufnimmt
	α	Absorptionsgrad des opaken Bauteils vom Kollektor
	U _{kol}	Wärmedurchgangskoeffizient des Kollektors zwischen Innenraum und Außenumgebung
	U _{kol,tr,e}	Wärmedurchgangskoeffizient der transparenten Schicht des Kollektors
	F _{r,k}	der Formfaktor zwischen dem Kollektor und dem Himmel: Fr,k = 1 für waagerechte Bauteile bis 45° Neigung; Fr,k = 0,5 für senkrechte Bauteile größer 45° Neigung
	$\Phi_{\rm r,k}$	der zusätzliche Wärmestrom aufgrund der vom Kollektor ausgehenden Wärmestrahlung an den Himmel, bestimmt nach Formel 7.3
	t	die Dauer des Berechnungszeitraums

Durch Abstrahlung gibt es Verluste in Richtung Himmel. Die Abstrahlungsverluste des Kollektors werden wie die Abstrahlungsverluste opaker Bauteile berechnet. Der Abstrahlungswärmestrom des Kollektors zum Himmel ist gemäß folgender Gleichung zu berechnen.

$$\Phi_{\rm r} = {\sf R}_{\rm se} {\sf U}_{\rm kol} {\sf A}_{\rm kol} {\sf h}_{\rm r} \Delta \theta_{\rm er}$$
7.3

mit: Φ_r

 R_{se}

der Wärmestrom aufgrund der vom Kollektor ausgehenden Wärmestrahlung an den Himmel

der Wärmeübergangswiderstand an der Außenoberfläche des Kollektors, bestimmt nach ISO 6946 (DIN EN ISO 6946 2008)

U _{kol}	Wärmedurchgangskoeffizient des Kollektors zwischen Innenraum und Außenumgebung
A _{kol}	die Gesamtfläche des Kollektors
h _r	der äußere Strahlungswärmetransferkoeffizient, bestimmt nach ISO 6946 (DIN EN ISO 6946 2008)
$\Delta \theta_{\text{er}}$	die mittlere Differenz zwischen der Außenlufttemperatur und der scheinbaren Temperatur des Himmels, vereinfachend kann 10 K angenommen werden (DIN V 18599- 2 2011a)

7.1.2 Konduktionsluftkollektor (opak)

Eine andere Art Luftkollektor ist der Konduktionsluftkollektor mit opaker Außenschicht, die als dünne, wärmeleitende Schicht und als Absorber dient. Der sonstige Kollektoraufbau entspricht dem transparenten Konduktionsluftkollektor. (sieh. Abb. 7-3). Der opake Konduktionskollektor erbringt geringere Gewinne als der transparente Kollektor gleicher Bauart.

Abb. 7-3: Konduktionsluftkollektor mit opaker Außenschicht

Der solare Wärmeeintrag durch dieses Bauteil kann ähnlich dem einer opaken Wand nach folgender Formel berechnet werden.

$$Q_{S,kol} = \left(I_{S}A_{kol}\alpha(R_{se}U_{kol}) - (F_{r,k}\Phi_{r,k})\right)t$$
7.4

mit: Q_{S,kol}

die Summe der Wärmeeinträge durch solare Einstrahlung auf die Kollektorfläche

Is die mittlere solare Einstrahlung während eines Monats nach DIN V 18599-10 (DIN V 18599-10 2011)

- A_{kol} die Gesamtfläche des Kollektors
- lpha Absorptionskoeffizient der Oberfläche, die die Sonnenstrahlung aufnimmt
- R_{se} der äußere Wärmeübergangswiderstand

U_{kol}	Wärmedurchgangskoeffizient des Kollektors zwischen Innenraum und Außenumgebung
$F_{r,k}$	der Formfaktor zwischen dem Kollektor und dem Himmel: $F_f = 1$ für waagerechte Kollektor bis 45° Neigung; $F_f = 0,5$ für senkrechte Kollektor größer 45° Neigung
$\Phi_{\rm r,k}$	der zusätzliche Wärmestrom aufgrund der vom Kollektor ausgehenden Wärmestrahlung an den Himmel, bestimmt nach Formel 7.3
t	die Dauer des Berechnungsschritts

 $C_{P,a}\rho_a$ kann zu 0,34 [Wh/(m³·K)] gesetzt werden (DIN V 18599-2 2011a)

7.2 Konvektionsluftkollektoren (Typ 2)

Konvektive Luftkollektoren nutzen die Luft in der Luftschicht als Wärmetragmedium. Die absorbierte Wärme wird bei diesem Kollektor über das Medium Luft direkt in die beheizte Zone transportiert. Die Außenschicht der konvektiv genutzten Kollektoren kann, wie beim Konduktionskollektor, opak oder transparent sein.

7.2.1 Raumluft-Konvektionsluftkollektoren

Diese Art von konvektiven Kollektoren weist einen direkten Luftaustauch mit der zu beheizenden Zone auf. Die beinhaltete Wärme wird durch die Kollektorluft zur Innenluft transportiert. Auch bei dieser Art von Kollektoren kann die Außenschicht transparent oder auch opak sein. Konvektionskollektoren übertragen neben dem konvektiven Teil immer noch einen Teil der Energie über Konduktion.

Abb. 7-4 Bilanz der Wärmeeinträge durch einen Konvektionskollektor

7.2.1.1 Raumluft-Konvektionsluftkollektor (transparent)

wird die Wärmeenergie durch die Luft des Luftspaltes in den zu beheizenden Raum eingebracht. Die erwärmte Kollektorluft strömt solange in den Raum, solange sie wärmer als Innenluft ist, die Innenraumluft strömt, um die Bilanz auszugleichen, zurück in den Luftspalt und wird wieder erwärmt. Mit diesem Prinzip wird der Raum durch den konvektiven Luftkollektor beheizt.

Abb. 7-5: Raumluft-Konvektionskollektor mit transparenter Außenschicht

Nach unterer Gleichung kann die abgegebene Wärme durch den konvektiven Luftkollektor mit transparenter Außenschicht zum Raum berechnet werden.

$$\mathbf{Q}_{\mathsf{S},\mathsf{kol}} = \left(\left(\mathsf{I}_{\mathsf{S}}\mathsf{F}_{\mathsf{sh},\mathsf{ob},\mathsf{k}}\mathsf{F}_{\mathsf{sh}}\mathsf{F}_{\mathsf{W}}\mathsf{F}_{\mathsf{S}} \right) \left(\mathsf{F}_{\mathsf{F}}\mathsf{A}_{\mathsf{kol}} \right) \mathsf{ga} \left(\left(\mathsf{U}_{\mathsf{kol}} \,\mathsf{R}_{\mathsf{tr},\mathsf{e}} \right) + \left(\frac{\mathsf{U}_{\mathsf{kol}}^{2}\mathsf{R}_{\mathsf{kol},\mathsf{i}}}{\mathsf{U}_{\mathsf{kol},\mathsf{i}}\mathsf{U}_{\mathsf{kol},\mathsf{e}}} \rho_{\mathsf{a}}\mathsf{c}_{\mathsf{a}} \frac{\mathsf{q}_{\mathsf{kol}}}{\mathsf{A}_{\mathsf{kol}}} \, \kappa_{\mathsf{kol}} \omega \right) \right) - \left(\mathsf{F}_{\mathsf{r},\mathsf{k}} \Phi_{\mathsf{r},\mathsf{k}} \right) \mathsf{d} \mathsf{t} - 7.5 \mathsf{d} \mathsf{sh} \mathsf{sh} \mathsf{d} \mathsf{sh} \mathsf{sh} \mathsf{d} \mathsf{sh} \mathsf{sh} \mathsf{d} \mathsf{sh} \mathsf{d} \mathsf{sh} \mathsf{d} \mathsf{sh} \mathsf{sh} \mathsf{d} \mathsf{sh} \mathsf{d} \mathsf{sh} \mathsf{d} \mathsf{sh} \mathsf{sh} \mathsf{d} \mathsf{sh} \mathsf{sh} \mathsf{d} \mathsf{sh} \mathsf{sh} \mathsf{d} \mathsf{sh} \mathsf{sh}$$

mit: Q_{S,kol}

die Summe der Wärmeeinträge durch solare Einstrahlung auf die Kollektorfläche

l_s

die mittlere solare Einstrahlung während eines Monats nach DIN V 18599-10 (DIN V 18599-10 2011)

- $\mathsf{F}_{\mathsf{sh},\mathsf{ob},\mathsf{k}}$ der Verschattungsfaktor durch außen liegende Hindernisse für die Kollektorfläche
- F_{sh} der Verschattungsfaktor innerhalb der Kollektorkonstruktion
- F_W Abminderungsfaktor wegen des nicht senkrechten Strahlungseinfalls; FW=0,9 (DIN V 18599-2 2011)
- F_s Abminderungsfaktor infolge von Verschmutzung nach DIN V 18599-10 (DIN V 18599-10 2011)
- F_F Abminderungsfaktor für Rahmen
- A_{kol} die Gesamtfläche des Kollektors
- g solarer Gesamtenergiedurchlassgrad der transparenten Schicht nach DIN EN 410 (DIN EN 410 2011)
- lpha Absorptionskoeffizient der Oberfläche, die die Sonnenstrahlung aufnimmt
- U_{kol} Wärmedurchgangskoeffizient des Kollektors zwischen Innenraum und Außenumgebung
- U_{kol,i} innerer Wärmedurchgangskoeffizient (die widerstand von Hälfte der Luftschicht wird berücksichtigt)
- U_{kol,e} äußerer Wärmedurchgangskoeffizient (die widerstand von Hälfte der Luftschicht wird berücksichtigt)
| $R_{tr,e}$ | äußerer Wärmedurchlasswiderstand des Kollektors zwischen Luftspalt und Außenumgebung |
|--------------------------------|---|
| R _{kol,i} | innerer Wärmedurchlasswiderstand der opaken Schicht zwischen Luftspalt und
Innenraum |
| $\rho_{a}\textbf{C}_{a}$ | die volumenbezogene Wärmespeicherfähigkeit der Luft |
| q _{kol} | der Sollwert des Luftvolumenstroms durch den belüfteten Spalt des Kollektors |
| κ_{kol} | ein Faktor, bezogen auf das Verhältnis der konvektiven Wärmegewinne zur
Wärmeverluste von Konvektionsluftkollektoren nach Formel 7.8 |
| ω | das Verhältnis der Gesamtsonnenstrahlung auf den Kollektor bei offenem Luftspalt zur
Gesamtsonnenstrahlung über den gesamten Berechnungsschritt, bestimmt nach Formel
7.6 |
| F _{r,k} | der Formfaktor zwischen dem Kollektor und dem Himmel: $F_f = 1$ für waagerechte Kollektor bis 45° Neigung; $F_f = 0,5$ für senkrechte Kollektor größer 45° Neigung |
| $\Phi_{\mathrm{r},\mathrm{k}}$ | der zusätzliche Wärmestrom aufgrund der vom Kollektor ausgehenden Wärmestrahlung
an den Himmel, bestimmt nach Formel 7.3 |
| t | die Dauer des Berechnungszeitraums |

 $c_{P,a}\rho_a\,$ kann zu 0,34 [Wh/(m³·K)] gesetzt werden (DIN V 18599-2 2011)

 κ_{sw} ist ein Faktor, bezogen auf das Verhältnis der konvektiven Wärmegewinne zu den Wärmeverlusten von Konvektionsluftkollektoren:

$$\kappa_{kol} = \left(1 - \exp\left(\frac{-A_{kol}Z}{\rho_{a}c_{a}q_{kol}}\right)\right)$$
7.6

mit: A_{kol}

Gesamtfläche des Kollektors

Z ein Faktor, bezogen auf die Wärmeverluste von Konvektionsluftkollektoren

 $\rho_a \textbf{C}_a \qquad \text{die volumenbezogene Wärmespeicherfähigkeit der Luft}$

q_{kol} der Sollwert des Luftvolumenstroms durch den belüfteten Spalt des Kollektors

Dabei ist Z ein Faktor, bezogen auf die Wärmeverluste von Konvektionsluftkollektoren:

$$\frac{1}{Z} = \frac{h_r}{h_c (h_c + 2h_r)} + \frac{1}{U_{kol,i} + U_{kol,e}}$$
7.7

^{mit:} h_c

der Wärmetransferkoeffizient durch Konvektion im Luftspalt nach ISO 6946 (DIN EN ISO 6946 2008)

hrder Wärmetransferkoeffizient durch Strahlung im Luftspalt nach ISO 6946 (DIN EN ISO
6946 2008)U
kol,iinnerer Wärmedurchgangskoeffizient (die widerstand von Hälfte der Luftschicht wird
berücksichtigt)

U _{kol,e}	äußerer Wärmedurchgangskoeffizient (die widerstand von Hälfte der Luftschicht wird
	berücksichtigt)

Der Verhältniswert ω wird wie folgt berechnet.

$$\omega = 1 - \exp\left(\frac{-2, 2I_{S,kol}}{U_{kol,e}\left(\theta_{kol,in} - \theta_{e}\right)t}\right)$$
7.8

mit: ω das Verhältnis der Gesamtsonnenstrahlung auf den Kollektor bei offenem Luftspalt zur Gesamtsonnenstrahlung über den Bilanzierungszeitraum

I_{S,kol} die gesamte Solare Einstrahlung auf der Kollektorfläche über den Bilanzierungszeitraum

- U_{kol,e} äußerer Wärmedurchgangskoeffizient (die widerstand von Hälfte der Luftschicht wird berücksichtigt)
- $\theta_{\rm kol,in}$ die durchschnittliche Luftschichttemperatur des Kollektors über den Bilanzierungszeitraum
- $heta_{\mathbf{e}}$ die durchschnittliche Außentemperatur über den gesamten Bilanzierungszeitraum
- t die Dauer des Bilanzierungszeitraums

7.2.1.2 Raumluft-Konvektionsluftkollektor (opak)

Dieser Kollektor weist als Außenschicht eine opake Absorberschicht auf (siehe Abb. 7-6). Die Funktionsweise entspricht grundlegend dem Konvektionskollektor mit transparenter Schicht, mit der Ausnahme, dass die Absorption auf der außenluftzugewandten Kollektoroberfläche stattfindet und die Wärme konduktiv in den Luftspalt gelangt. Der opake Konvektionskollektor erbringt geringere Gewinne als der transparente Kollektor gleicher Bauart.

Abb. 7-6: Raumluft-Konvektionskollektor mit opaker Außenschicht

Die solaren Wärmegewinne durch den beschriebenen Kollektor können nach folgender Formel bilanziert werden:

$$\mathbf{Q}_{\mathsf{S},\mathsf{kol}} = \left(\left(\mathsf{I}_{\mathsf{S}}\mathsf{F}_{\mathsf{sh},\mathsf{ob},\mathsf{k}}\mathsf{F}_{\mathsf{sh}} \right) \left(\mathsf{F}_{\mathsf{F}}\mathsf{A}_{\mathsf{kol}} \right) \alpha \left(\left(\frac{\mathsf{U}_{\mathsf{kol}}}{\mathsf{h}_{\mathsf{e}}} \right) + \left(\frac{\mathsf{U}_{\mathsf{kol}}^2}{\mathsf{U}_{\mathsf{kol},\mathsf{i}}^2 \mathsf{h}_{\mathsf{e}}} \rho_{\mathsf{a}} \mathsf{C}_{\mathsf{a}} \frac{\mathsf{q}_{\mathsf{kol}}}{\mathsf{A}_{\mathsf{kol}}} \kappa_{\mathsf{kol}} \omega \right) \right) - \mathsf{F}_{\mathsf{r},\mathsf{k}} \Phi_{\mathsf{r},\mathsf{k}} \right) \mathsf{t} \quad 7.9$$

mit: Q_{S kol} die Summe der Wärmeeinträge durch solare Einstrahlung auf die Kollektorfläche

- Is die mittlere solare Einstrahlung während eines Monats nach DIN V 18599-10 (DIN V 18599-10 2011)
- F_{sh,ob,k} der Verschattungsfaktor durch außen liegende Hindernisse für die Kollektorfläche
- **F**_{sh} der Verschattungsfaktor innerhalb der Kollektorkonstruktion
- F_F Abminderungsfaktor für Rahmen
- A_{kol} die Gesamtfläche des Kollektors
- lpha Absorptionskoeffizient der Oberfläche, die die Sonnenstrahlung aufnimmt
- $\mathsf{U}_{\mathsf{knl}}$ Wärmedurchgangskoeffizient des Kollektors zwischen Innenraum und Außenumgebung
- U_{kol.i} innerer und Wärmedurchgangskoeffizient (die widerstand von Hälfte der Luftschicht wird berücksichtigt)
- h_e Wärmetransferkoeffizient an der Außenfläche nach ISO 6946 (DIN EN ISO 6946 2008)
- $\rho_a C_a$ die volumenbezogene Wärmespeicherfähigkeit der Luft
- der Sollwert des Luftvolumenstroms durch den belüfteten Spalt des Kollektors
- ein Faktor, bezogen auf das Verhältnis der konvektiven Wärmegewinne zur
 K_{kol} Wärmeverluste von Konvektionsluftkollektoren nach Formel 7.8
- das Verhältnis der Gesamtsonnenstrahlung auf den Kollektor bei offenem Luftspalt zur
 Gesamtsonnenstrahlung über den gesamten Berechnungsschritt, bestimmt nach Formel
 7.6
- $F_{r,k}$ der Formfaktor zwischen dem Kollektor und dem Himmel: $F_f = 1$ für waagerechte Kollektor bis 45° Neigung; $F_f = 0,5$ für senkrechte Kollektor größer 45° Neigung
- $\Phi_{\rm r,k}$ der zusätzliche Wärmestrom aufgrund der vom Kollektor ausgehenden Wärmestrahlung an den Himmel, bestimmt nach Formel 7.3
- t die Dauer des Berechnungszeitraums

c_{P,a}ρ_a kann zu 0,34 [Wh/(m³·K)] gesetzt werden (DIN V 18599-2 2011)

7.2.2 Raumluft-Konvektionsluftkollektoren mit 2-Zonen-Nutzung

Einige der untersuchten, gebauten Projekte, wiesen Luftkollektoren auf, die zwei Zonen mit solaren Gewinnen versorgen. Ein Teil der Wärmeenergie fließt per Konduktion in die Bilanz der an den Kollektor grenzenden Zone ein, ein anderer Teil strömt per Konvektion in die Bilanz einer kollektorfernen Zone. Um die Bilanzierung zu ermöglichen, müssen daher der konduktive und der konvektive Teil separat ausgewiesen werden. Beim Raumluft-Konvektionskollektor bildet die konvektiv versorgte Zone eine Schleife mit der Kollektor-Luftschicht.

7.2.2.1 Raumluft-Konvektionsluftkollektor mit 2-Zonen-Nutzung (transparent)

Die Wirkungsweise entspricht dem Raumluft-Konvektionsluftkollektor (transparent).

Abb. 7-7 Raumluft-Konvektionsluftkollektoren mit 2-Zonen-Nutzung

Konduktiver Teil

$$\mathbf{Q}_{S,kol} = \left(\left(I_{S} \mathbf{F}_{sh,ob,k} \mathbf{F}_{sh} \mathbf{F}_{W} \mathbf{F}_{S} \right) \left(\mathbf{F}_{F} \mathbf{A}_{kol} \right) g\alpha \left(\mathbf{U}_{kol} \mathbf{R}_{tr,e} \right) - \left(\left(1 - \mathbf{F}_{n,konv} \right) \left(\mathbf{F}_{r,k} \Phi_{r,k} \right) \right) \right) t$$
7.10

mit: Q_{S,kol}

Q_{S kol} die Summe der Wärmeeinträge durch solare Einstrahlung auf die Kollektorfläche

I _S	die mittlere solare Einstrahlung während eines Monats nach DIN V 18599-10 (DIN V
	18599-10 2011)

F_{sh,ob,k} der Verschattungsfaktor durch außen liegende Hindernisse für die Kollektorfläche

- F_{sh} der Verschattungsfaktor innerhalb der Kollektorkonstruktion
- F_W Abminderungsfaktor wegen des nicht senkrechten Strahlungseinfalls; FW=0,9 (DIN V 18599-2 2011)

F _s	Abminderungsfaktor infolge von Verschmutzung nach DIN V 18599-10 (DIN V 18599-10 2011)
F _F	Abminderungsfaktor für Rahmen
A_{kol}	die Gesamtfläche des Kollektors
g	solarer Gesamtenergiedurchlassgrad der transparenten Schicht nach DIN EN 410 (DIN EN 410 2011)
α	Absorptionskoeffizient der Oberfläche, die die Sonnenstrahlung aufnimmt
U _{kol}	Wärmedurchgangskoeffizient des Kollektors zwischen Innenraum und Außenumgebung
$R_{tr,e}$	äußerer Wärmedurchlasswiderstand des Kollektors zwischen Luftspalt und Außenumgebung
F _{n,konv}	Anteil der Zeit, die der Konvektionsluftkollektor im Betrieb ist
$\Phi_{\rm r,k}$	der zusätzliche Wärmestrom aufgrund der vom Kollektor ausgehenden Wärmestrahlung an den Himmel, bestimmt nach Formel 7.3
t	die Dauer des Berechnungszeitraums

Konvektiver Teil

	$Q_{S,kol} = \left(\left(I \right) \right)$	$I_{S}F_{sh,ob,k}F_{sh}F_{W}F_{S})(F_{F}A_{kol})g\alpha\left(\frac{U_{kol}^{2}R_{kol,i}}{U_{kol,i}U_{kol,e}}\rho_{a}c_{a}\frac{q_{kol}}{A_{kol}}\kappa_{kol}\omega\right) - F_{n,konv}\left(F_{r,k}\Phi_{r,k}\right)\right)t$ 7.11
it:	Q _{S,kol}	die Summe der Wärmeeinträge durch solare Einstrahlung auf die Kollektorfläche
	I _S	die mittlere solare Einstrahlung während eines Monats nach DIN V 18599-10 (DIN V 18599-10 2011)
	$F_{sh,ob,k}$	der Verschattungsfaktor durch außen liegende Hindernisse für die Kollektorfläche
	F_{sh}	der Verschattungsfaktor innerhalb der Kollektorkonstruktion
	F_{W}	Abminderungsfaktor wegen des nicht senkrechten Strahlungseinfalls; FW=0,9 (DIN V 18599-2 2011)
	F _S	Abminderungsfaktor infolge von Verschmutzung nach DIN V 18599-10 (DIN V 18599-10 2011)
	F _F	Abminderungsfaktor für Rahmen
	A _{kol}	die Gesamtfläche des Kollektors

g	solarer Gesamtenergiedurchlassgrad der transparenten Schicht nach DIN EN 410 (DIN EN 410 2011)
α	Absorptionskoeffizient der Oberfläche, die die Sonnenstrahlung aufnimmt
U _{kol}	Wärmedurchgangskoeffizient des Kollektors zwischen Innenraum und Außenumgebung
U _{kol,i}	innerer Wärmedurchgangskoeffizient (die widerstand von Hälfte der Luftschicht wird berücksichtigt)
U _{kol,e}	äußerer Wärmedurchgangskoeffizient (die widerstand von Hälfte der Luftschicht wird berücksichtigt)
R _{kol,i}	innerer Wärmedurchlasswiderstand der opaken Schicht zwischen Luftspalt und Innenraum
$\rho_{a}\mathbf{C}_{a}$	die volumenbezogene Wärmespeicherfähigkeit der Luft
q _{kol}	der Sollwert des Luftvolumenstroms durch den belüfteten Spalt des kollektors
κ _{kol}	ein Faktor, bezogen auf das Verhältnis der konvektiven Wärmegewinne zur Wärmeverluste von Konvektionsluftkollektoren nach Formel 7.8
ω	das Verhältnis der Gesamtsonnenstrahlung auf den Kollektor bei offenem Luftspalt zur Gesamtsonnenstrahlung über den gesamten Berechnungsschritt, bestimmt nach Formel 7.6
F _{n,konv}	Anteil der Zeit, die der Konvektionsluftkollektor im Betrieb ist
F _{r,k}	der Formfaktor zwischen dem Kollektor und dem Himmel: $F_f = 1$ für waagerechte Kollektor bis 45° Neigung; $F_f = 0,5$ für senkrechte Kollektor größer 45° Neigung
$\Phi_{\rm r,k}$	der zusätzliche Wärmestrom aufgrund der vom Kollektor ausgehenden Wärmestrahlung an den Himmel, bestimmt nach Formel 7.3
t	die Dauer des Berechnungszeitraums

 $c_{P,a}\rho_a$ kann zu 0,34 [Wh/(m³·K)] gesetzt werden (DIN V 18599-2 2011)

7.2.2.2 Raumluft-Konvektionsluftkollektor mit 2-Zonen-Nutzung (opak)

Die Wirkungsweise entspricht dem Raumluft-Konvektionsluftkollektor (opak).

Abb. 7-8 Raumluft-Konvektionsluftkollektoren mit 2-Zonen-Nutzung

Konduktiver Teil

$$\mathbf{Q}_{S,kol} = \left(\left(\mathbf{I}_{S} \mathbf{F}_{sh,ob,k} \mathbf{F}_{sh} \right) \left(\mathbf{F}_{F} \mathbf{A}_{kol} \right) \alpha \left(\frac{\mathbf{U}_{kol}}{\mathbf{h}_{e}} \right) - \left(\left(1 - \mathbf{F}_{n,konv} \right) \left(\mathbf{F}_{r,k} \Phi_{r,k} \right) \right) \right) \mathbf{t}$$
 7.12

mit:	$Q_{S,kol}$	die Summe der Wärmeeinträge durch solare Einstrahlung auf die Kollektorfläche
	I _S	die mittlere solare Einstrahlung während eines Monats nach DIN V 18599-10 (DIN V 18599-10 2011)
	$F_{sh,ob,k}$	der Verschattungsfaktor durch außen liegende Hindernisse für die Kollektorfläche
	F_{sh}	der Verschattungsfaktor innerhalb der Kollektorkonstruktion
	F _F	Abminderungsfaktor für Rahmen
	A _{kol}	die Gesamtfläche des Kollektors
	α	Absorptionskoeffizient der Oberfläche, die die Sonnenstrahlung aufnimmt
	U _{kol}	Wärmedurchgangskoeffizient des Kollektors zwischen Innenraum und Außenumgebung
	h _e	Wärmetransferkoeffizient an der Außenfläche nach ISO 6946 (DIN EN ISO 6946 2008)
	F _{n,konv}	Anteil der Zeit, die der Konvektionsluftkollektor im Betrieb ist
	F _{r,k}	der Formfaktor zwischen dem Kollektor und dem Himmel: $F_f = 1$ für waagerechte Kollektor bis 45° Neigung; $F_f = 0,5$ für senkrechte Kollektor größer 45° Neigung
	$\Phi_{\rm r,k}$	der zusätzliche Wärmestrom aufgrund der vom Kollektor ausgehenden Wärmestrahlung an den Himmel, bestimmt nach Formel 7.3
	t	die Dauer des Berechnungszeitraums

Konvektiver Teil

$$\begin{split} \mathbf{Q}_{S,kol} &= \left(\left(I_{S} F_{sh,ob,k} F_{sh} \right) \left(F_{F} A_{kol} \right) \alpha \left(\frac{U_{kol}^{2}}{U_{kol,i}^{2} h_{e}} \rho_{a} \mathbf{c}_{a} \frac{\mathbf{q}_{kol}}{A_{kol}} \kappa_{kol} \omega \right) - F_{n,konv} \left(F_{r,k} \Phi_{r,k} \right) \right) \mathbf{t} \quad 7.13 \end{split}$$
mit:
$$\mathbf{Q}_{S,kol} \quad \text{die Summe der Wärmeeinträge durch solare Einstrahlung auf die Kollektorfläche die mittlere solare Einstrahlung während eines Monats nach DIN V 18599-10 (DIN V 18599-10 2011)
$$\mathbf{F}_{sh,ob,k} \quad \text{der Verschattungsfaktor durch außen liegende Hindernisse für die Kollektorfläche F_{sh} \quad \text{der Verschattungsfaktor innerhalb der Kollektorkonstruktion} \\ \mathbf{F}_{F} \quad \text{Abminderungsfaktor für Rahmen } \\ \mathbf{A}_{kol} \quad \text{die Gesamtfläche des Kollektors} \\ \alpha \quad \text{Absorptionskoeffizient der Oberfläche, die die Sonnenstrahlung aufnimmt} \\ \mathbf{U}_{kol} \quad \text{Wärmedurchgangskoeffizient des Kollektors zwischen Innenraum und Außenumgebung der inneraum und Wärmedurchgangskoeffizient (die widerstand von Hälfte der Luftschicht der Luftschicht der Kollektors für der Luftschicht der Luftschicht der Kollektors für der Luftschicht der Lu$$$$

U_{kol.i} der innere und Wärmedurchgangskoeffizient (die widerstand von Hälfte der Luftschicht wird berücksichtigt)

- h_e Wärmetransferkoeffizient an der Außenfläche nach ISO 6946 (DIN EN ISO 6946 2008)
- $\rho_a c_a$ die volumenbezogene Wärmespeicherfähigkeit der Luft
- $\mathbf{q}_{\mathbf{kol}}$ der Sollwert des Luftvolumenstroms durch den belüfteten Spalt des Kollektors
- ein Faktor, bezogen auf das Verhältnis der konvektiven Wärmegewinne zur K_{kol} Wärmeverluste von Konvektionsluftkollektoren nach Formel 7.8
- das Verhältnis der Gesamtsonnenstrahlung auf den Kollektor bei offenem Luftspalt zur
 Gesamtsonnenstrahlung über den gesamten Berechnungsschritt, bestimmt nach Formel
 7.6
- F_{n,konv} Anteil der Zeit, die der Konvektionsluftkollektor im Betrieb ist
- $F_{r,k}$ der Formfaktor zwischen dem Kollektor und dem Himmel: $F_f = 1$ für waagerechte Kollektor bis 45° Neigung; $F_f = 0,5$ für senkrechte Kollektor größer 45° Neigung
- $\Phi_{r,k}$ der zusätzliche Wärmestrom aufgrund der vom Kollektor ausgehenden Wärmestrahlung an den Himmel, bestimmt nach Formel 7.3
- t die Dauer des Berechnungszeitraums

 $C_{P,a}\rho_a$ kann zu 0,34 [Wh/(m³·K)] gesetzt werden (DIN V 18599-2 2011)

7.2.3 Außenluft-Konvektionsluftkollektoren

Bei dieser Art von Kollektor strömt Außenluft in den Kollektor, wird durch die Sonneneinstrahlung erwärmt und strömt in die zu beheizende Zone. Ein Teil der benötigten frischen Luft des Raumes kann mit diesem Prinzip vorerwärmt werden, die Lüftungsbilanz der Zone muss ausgeglichen werden. Der Konvektionskollektor überträgt immer einen Teil der Energie konduktiv.

7.2.3.1 Außenluft-Konvektionsluftkollektor (transparent)

Dieser Luftkollektor weist eine transparente Deckschicht auf. Die Solarstrahlung wird auf der opaken Wandschicht absorbiert und erwärmt so die einströmende Außenluft. Die erwärmte Luft wird als direkte Zuluft für den zu heizenden Raum genutzt (siehe Abb. 7-9).

Abb. 7-9: Außenluft-Konvektionskollektor mit transparenter Außenschicht

Abb. 7-10 Bilanz der Wärmeeinträge durch einen Konvektionsluftkollektor

Die Bilanzierung des Wärmeeintrags durch diesen Kollektor kann gemäß unterer Gleichung gerechnet werden.

$$Q_{S,kol} = \left(\left(I_{S}F_{sh,ob,k}F_{sh}F_{W}F_{S} \right) \left(F_{F}A_{kol} \right) g\alpha \left(U_{kol}R_{tr,e} + \frac{U_{kol}^{2}R_{kol,i}}{U_{kol,i}U_{kol,e}} \rho_{a}c_{a} \frac{q_{kol}}{A_{kol}} \kappa_{kol} \right) - F_{r,k}\Phi_{r,k} \right) t \quad 7.14$$

mit: Q_{S,kol} die Summe der Wärmeeinträge durch solare Einstrahlung auf die Kollektorfläche

I _S	die mittlere solare Einstrahlung während eines Monats nach DIN V 18599-10 (DIN V 18599-10 2011)
$F_{sh,ob,k}$	der Verschattungsfaktor durch außen liegende Hindernisse für die Kollektorfläche
F_{sh}	der Verschattungsfaktor innerhalb der Kollektorkonstruktion
F_{W}	Abminderungsfaktor wegen des nicht senkrechten Strahlungseinfalls; FW=0,9 (DIN V 18599-2 2011)
F _s	Abminderungsfaktor infolge von Verschmutzung nach DIN V 18599-10 (DIN V 18599-10 2011)
F _F	Abminderungsfaktor für Rahmen
A_{kol}	die Gesamtfläche des Kollektors
g	solarer Gesamtenergiedurchlassgrad der transparenten Schicht nach DIN EN 410 (DIN EN 410 2011)
α	Absorptionskoeffizient der Oberfläche, die die Sonnenstrahlung aufnimmt
U _{kol}	Wärmedurchgangskoeffizient des Kollektors zwischen Innenraum und Außenumgebung
U _{kol,i}	innerer Wärmedurchgangskoeffizient (die widerstand von Hälfte der Luftschicht wird berücksichtigt)
$\mathbf{U}_{\mathrm{kol},\mathrm{e}}$	äußerer Wärmedurchgangskoeffizient (die widerstand von Hälfte der Luftschicht wird berücksichtigt)
R _{kol,i}	innerer Wärmedurchlasswiderstand der Wand zwischen Luftspalt und Innenraum
R _{tr,e}	äußerer Wärmedurchlasswiderstand der transparenten Schicht zwischen Luftspalt und Außenumgebung
$\rho_{a}\textbf{C}_{a}$	die volumenbezogene Wärmespeicherfähigkeit der Luft
q _{kol}	der Sollwert des Luftvolumenstroms durch den belüfteten Spalt des kollektors
κ _{kol}	ein Faktor, bezogen auf das Verhältnis der konvektiven Wärmegewinne zur Wärmeverluste von Konvektionsluftkollektoren nach Formel 7.8
F _{r,k}	der Formfaktor zwischen dem Kollektor und dem Himmel: F _f = 1 für waagerechte Kollektor bis 45° Neigung; F _f = 0,5 für senkrechte Kollektor größer 45° Neigung
$\Phi_{\rm r,k}$	der zusätzliche Wärmestrom aufgrund der vom Kollektor ausgehenden Wärmestrahlung an den Himmel, bestimmt nach Formel 7.3
t	die Dauer des Berechnungszeitraums

 $C_{P,a}\rho_a$ kann zu 0,34 [Wh/(m³·K)] gesetzt werden (DIN V 18599-2 2011)

7.2.3.2 Außenluft-Konvektionsluftkollektor (opak)

Dieser Kollektor weist eine opake Absorberschicht als Deckschicht auf. Die Außenschicht absorbiert die solare Strahlung und leitet einen Teil der erzeugten Wärme nach innen in Richtung Luftschicht. Die Wärme wird auf die einströmende Außenluft übertragen und an den zu beheizenden Innenraum konvektiv weitergegeben. Der opake Außenluft-Konvektionskollektor erbringt geringere Gewinne als der transparente Kollektor gleicher Bauart (siehe Abb. 7-11).

Abb. 7-11: Außenluft-Konvektionskollektor mit opaker Außenschicht

Die Wärme, die durch diesen Kollektor auf den zu beheizenden Raum übertragen wird, wird wie folgt bilanziert:

$$\mathbf{Q}_{\mathsf{S},\mathsf{kol}} = \left(\left(\mathsf{I}_{\mathsf{S}} \mathsf{F}_{\mathsf{sh},\mathsf{ob},\mathsf{k}} \mathsf{F}_{\mathsf{sh}} \right) \left(\mathsf{F}_{\mathsf{F}} \mathsf{A}_{\mathsf{kol}} \right) \alpha \left(\frac{\mathsf{U}_{\mathsf{kol}}}{\mathsf{h}_{\mathsf{e}}} + \frac{\mathsf{U}_{\mathsf{kol}}^{2}}{\mathsf{U}_{\mathsf{kol},\mathsf{i}}^{2} \mathsf{h}_{\mathsf{e}}} \rho_{\mathsf{a}} \mathsf{C}_{\mathsf{a}} \frac{\mathsf{q}_{\mathsf{kol}}}{\mathsf{A}_{\mathsf{kol}}} \kappa_{\mathsf{kol}} \right) - \mathsf{F}_{\mathsf{r},\mathsf{k}} \Phi_{\mathsf{r},\mathsf{k}} \right) \mathsf{t} \quad 7.15$$

mit: Q_{S,kol}

die Summe der Wärmeeinträge durch solare Einstrahlung auf die Kollektorfläche

Is die mittlere solare Einstrahlung während eines Monats nach DIN V 18599-10 (DIN V 18599-10 2011)

 $\mathsf{F}_{\mathsf{sh},\mathsf{ob},\mathsf{k}}$ der Verschattungsfaktor durch außen liegende Hindernisse für die Kollektorfläche

F_{sh} der Verschattungsfaktor innerhalb der Kollektorkonstruktion

F_F Abminderungsfaktor für Rahmen

 $\mathsf{A}_{\mathsf{kol}}$ die Gesamtfläche des Kollektors

lpha Absorptionskoeffizient der Oberfläche, die die Sonnenstrahlung aufnimmt

 $\mathsf{U}_{\mathsf{kol}}$ Wärmedurchgangskoeffizient des Kollektors zwischen Innenraum und Außenumgebung

U _{kol,i}	innerer Wärmedurchgangskoeffizient (die widerstand von Hälfte der Luftschicht wird berücksichtigt)
U _{kol,e}	äußerer Wärmedurchgangskoeffizient (die widerstand von Hälfte der Luftschicht wird berücksichtigt)
h _e	Wärmetransferkoeffizient an der Außenfläche nach ISO 6946 (DIN EN ISO 6946 2008)
$\rho_{a}\textbf{C}_{a}$	die volumenbezogene Wärmespeicherfähigkeit der Luft
q _{kol}	der Sollwert des Luftvolumenstroms durch den belüfteten Spalt des Kollektors
κ_{kol}	ein Faktor, bezogen auf das Verhältnis der konvektiven Wärmegewinne zur Wärmeverluste von Konvektionsluftkollektoren nach Formel 7.8
ω	das Verhältnis der Gesamtsonnenstrahlung auf den Kollektor bei offenem Luftspalt zur Gesamtsonnenstrahlung über den gesamten Berechnungsschritt, bestimmt nach Formel 7.6
F _{r,k}	der Formfaktor zwischen dem Kollektor und dem Himmel: $F_f = 1$ für waagerechte Kollektor bis 45° Neigung; $F_f = 0,5$ für senkrechte Kollektor größer 45° Neigung
$\Phi_{\rm r,k}$	der zusätzliche Wärmestrom aufgrund der vom Kollektor ausgehenden Wärmestrahlung an den Himmel, bestimmt nach Formel 7.3
t	die Dauer des Berechnungszeitraums

 $c_{P,a}\rho_a$ kann zu 0,34 [Wh/(m³·K)] gesetzt werden (DIN V 18599-2 2011)

7.2.4 Außenluft-Konvektionsluftkollektoren mit 2-Zonen-Nutzung

Einige der untersuchten, gebauten Projekte, wiesen Luftkollektoren auf, die zwei Zonen mit solaren Gewinnen versorgen. Ein Teil der Wärmeenergie fließt per Konduktion in die Bilanz der an den Kollektor grenzenden Zone ein, ein anderer Teil strömt per Konvektion in die Bilanz einer kollektorfernen Zone. Um die Bilanzierung zu ermöglichen, müssen daher der konduktive und der konvektive Teil separat ausgewiesen werden. Beim Außenluft-Konvektionskollektor strömt Außenluft in den Kollektor, wird solar erwärmt und gelangt in die kollektorferne Zone. Innerhalb der kollektorfernen Zone muss die Lüftungsbilanz gleich null sein.

7.2.4.1 Außenluft -Konvektionsluftkollektor mit 2-Zonen-Nutzung (transparent)

Die Wirkungsweise entspricht dem Außenluft-Konvektionsluftkollektor (transparent).

Abb. 7-12 Außenluft-Konvektionsluftkollektoren mit 2-Zonen-Nutzung

Konduktiver Teil

$$\mathbf{Q}_{\mathsf{S},\mathsf{kol}} = \left(\left(\mathsf{I}_{\mathsf{S}}\mathsf{F}_{\mathsf{sh},\mathsf{ob},\mathsf{k}}\mathsf{F}_{\mathsf{sh}}\mathsf{F}_{\mathsf{W}}\mathsf{F}_{\mathsf{S}} \right) \left(\mathsf{F}_{\mathsf{F}}\mathsf{A}_{\mathsf{kol}} \right) \mathsf{ga} \left(\mathsf{U}_{\mathsf{kol}} \,\mathsf{R}_{\mathsf{tr},\mathsf{e}} \right) - \left(\left(1 - \mathsf{F}_{\mathsf{n},\mathsf{konv}} \right) \left(\mathsf{F}_{\mathsf{r},\mathsf{k}} \Phi_{\mathsf{r},\mathsf{k}} \right) \right) \right) \mathsf{t}$$
7.16

mit:	$Q_{S,kol}$	die Summe der Wärmeeinträge durch solare Einstrahlung auf die Kollektorfläche
	I _s	die mittlere solare Einstrahlung während eines Monats nach DIN V 18599-10 (DIN V 18599-10 2011)
	$F_{sh,ob,k}$	der Verschattungsfaktor durch außen liegende Hindernisse für die Kollektorfläche
	F_{sh}	der Verschattungsfaktor innerhalb der Kollektorkonstruktion
	F _w	Abminderungsfaktor wegen des nicht senkrechten Strahlungseinfalls; FW=0,9 (DIN V 18599-2 2011)
	Fs	Abminderungsfaktor infolge von Verschmutzung nach DIN V 18599-10 (DIN V 18599-10 2011)
	F _F	Abminderungsfaktor für Rahmen
	A _{kol}	die Gesamtfläche des Kollektors
	g	solarer Gesamtenergiedurchlassgrad der transparenten Schicht nach DIN EN 410 (DIN EN 410 2011)
	α	Absorptionskoeffizient der Oberfläche, die die Sonnenstrahlung aufnimmt
	U _{kol}	Wärmedurchgangskoeffizient des Kollektors zwischen Innenraum und Außenumgebung

R _{tr,e}	äußerer Wärmedurchlasswiderstand der transparenten Schicht zwischen Luftspalt und Außenumgebung
F _{n,konv}	Anteil der Zeit, die der Konvektionsluftkollektor im Betrieb ist
$F_{r,k}$	der Formfaktor zwischen dem Kollektor und dem Himmel: $F_f = 1$ für waagerechte Kollektor bis 45° Neigung; $F_f = 0,5$ für senkrechte Kollektor größer 45° Neigung
$\Phi_{\mathrm{r,k}}$	der zusätzliche Wärmestrom aufgrund der vom Kollektor ausgehenden Wärmestrahlung an den Himmel, bestimmt nach Formel 7.3

t die Dauer des Berechnungszeitraums

Konvektiver Teil

$$\mathbf{Q}_{S,kol} = \left(\left(\mathbf{I}_{S} \mathbf{F}_{sh,ob,k} \mathbf{F}_{sh} \mathbf{F}_{W} \mathbf{F}_{S} \right) \left(\mathbf{F}_{F} \mathbf{A}_{kol} \right) \mathbf{g} \alpha \left(\frac{\mathbf{U}_{kol}^{2} \mathbf{R}_{kol,i}}{\mathbf{U}_{kol,i} \mathbf{U}_{kol,e}} \rho_{a} \mathbf{c}_{a} \frac{\mathbf{q}_{kol}}{\mathbf{A}_{kol}} \kappa_{kol} \right) - \mathbf{F}_{n,konv} \left(\mathbf{F}_{r,k} \Phi_{r,k} \right) \right) \mathbf{t}$$
 7.17

mit:	$Q_{S,kol}$	die Summe der Wärmeeinträge durch solare Einstrahlung auf die Kollektorfläche
	I _S	die mittlere solare Einstrahlung während eines Monats nach DIN V 18599-10 (DIN V 18599-10 2011)
	$F_{sh,ob,k}$	der Verschattungsfaktor durch außen liegende Hindernisse für die Kollektorfläche
	F_{sh}	der Verschattungsfaktor innerhalb der Kollektorkonstruktion
	F _w	Abminderungsfaktor wegen des nicht senkrechten Strahlungseinfalls; FW=0,9 (DIN V 18599-2 2011)
	Fs	Abminderungsfaktor infolge von Verschmutzung nach DIN V 18599-10 (DIN V 18599-10 2011)
	F _F	Abminderungsfaktor für Rahmen
	A_{kol}	die Gesamtfläche des Kollektors
	g	solarer Gesamtenergiedurchlassgrad der transparenten Schicht nach DIN EN 410 (DIN EN 410 2011)
	α	Absorptionskoeffizient der Oberfläche, die die Sonnenstrahlung aufnimmt
	U _{kol}	Wärmedurchgangskoeffizient des Kollektors zwischen Innenraum und Außenumgebung
	U _{kol,i}	innerer Wärmedurchgangskoeffizient (die widerstand von Hälfte der Luftschicht wird berücksichtigt)

$\mathbf{U}_{\mathrm{kol},\mathrm{e}}$	äußerer Wärmedurchgangskoeffizient (die widerstand von Hälfte der Luftschicht wird berücksichtigt)
R _{kol,i}	innerer Wärmedurchlasswiderstand der Wand zwischen Luftspalt und Innenraum
$\rho_{\text{a}}\text{C}_{\text{a}}$	die volumenbezogene Wärmespeicherfähigkeit der Luft
q_{kol}	der Sollwert des Luftvolumenstroms durch den belüfteten Spalt des Kollektors
κ_{kol}	ein Faktor, bezogen auf das Verhältnis der konvektiven Wärmegewinne zur Wärmeverluste von Konvektionsluftkollektoren nach Formel 7.8
ω	das Verhältnis der Gesamtsonnenstrahlung auf den Kollektor bei offenem Luftspalt zur Gesamtsonnenstrahlung über den gesamten Berechnungsschritt, bestimmt nach Formel 7.6
F _{n,konv}	Anteil der Zeit, die der Konvektionsluftkollektor im Betrieb ist
F _{r,k}	der Formfaktor zwischen dem Kollektor und dem Himmel: $F_f = 1$ für waagerechte Kollektor bis 45° Neigung; $F_f = 0,5$ für senkrechte Kollektor größer 45° Neigung
$\Phi_{\rm r,k}$	der zusätzliche Wärmestrom aufgrund der vom Kollektor ausgehenden Wärmestrahlung an den Himmel, bestimmt nach Formel 7.3
t	die Dauer des Berechnungszeitraums

 $c_{P,a}\rho_a$ kann zu 0,34 [Wh/(m³·K)] gesetzt werden (DIN V 18599-2 2011a)

7.2.4.2 Außenluft -Konvektionsluftkollektor mit 2-Zonen-Nutzung (opak)

Die Wirkungsweise entspricht dem Außenluft-Konvektionsluftkollektor (opak).

Abb. 7-13 Außenluft-Konvektionsluftkollektoren mit 2-Zonen-Nutzung

Konduktiver Teil

$$Q_{S,kol} = \left(\left(I_{S} F_{sh,ob,k} F_{sh} \right) \left(F_{F} A_{kol} \right) \alpha \left(\frac{U_{kol}}{h_{e}} \right) - \left(\left(1 - F_{n,konv} \right) \left(F_{r,k} \Phi_{r,k} \right) \right) \right) t$$
7.18

mit: Q_{S,kol} die Summe der Wärmeeinträge durch solare Einstrahlung auf die Kollektorfläche

- $\mathsf{F}_{\mathsf{sh.ob},\mathsf{k}}$ der Verschattungsfaktor durch außen liegende Hindernisse für die Kollektorfläche
- F_{sh} der Verschattungsfaktor innerhalb der Kollektorkonstruktion
- **F**_F Abminderungsfaktor für Rahmen
- $\mathsf{A}_{\mathsf{kol}}$ die Gesamtfläche des Kollektors
- lpha Absorptionskoeffizient der Oberfläche, die die Sonnenstrahlung aufnimmt
- Ukol Wärmedurchgangskoeffizient des Kollektors zwischen Innenraum und Außenumgebung
- h_e Wärmetransferkoeffizient an der Außenfläche nach ISO 6946 (DIN EN ISO 6946 2008)

F_{n.konv} Anteil der Zeit, die der Konvektionsluftkollektor im Betrieb ist

- $F_{r,k}$ der Formfaktor zwischen dem Kollektor und dem Himmel: $F_f = 1$ für waagerechte Kollektor bis 45° Neigung; $F_f = 0,5$ für senkrechte Kollektor größer 45° Neigung
- $\Phi_{r,k}$ der zusätzliche Wärmestrom aufgrund der vom Kollektor ausgehenden Wärmestrahlung an den Himmel, bestimmt nach Formel 7.3

die Dauer des Berechnungszeitraums

t

Konvektiver Teil

$$\mathbf{Q}_{S,kol} = \left(\left(\mathsf{I}_{S}\mathsf{F}_{\mathsf{sh},\mathsf{ob},\mathsf{k}}\mathsf{F}_{\mathsf{sh}} \right) \left(\mathsf{F}_{\mathsf{F}}\mathsf{A}_{\mathsf{kol}} \right) \alpha \left(\frac{\mathsf{U}_{\mathsf{kol}}^{2}}{\mathsf{U}_{\mathsf{kol},\mathsf{i}}^{2}\mathsf{h}_{\mathsf{e}}} \rho_{\mathsf{a}}\mathsf{c}_{\mathsf{a}} \frac{\mathsf{q}_{\mathsf{kol}}}{\mathsf{A}_{\mathsf{kol}}} \kappa_{\mathsf{kol}} \right) - \mathsf{F}_{\mathsf{n},\mathsf{konv}} \left(\mathsf{F}_{\mathsf{r},\mathsf{k}} \Phi_{\mathsf{r},\mathsf{k}} \right) \right) \mathsf{t}$$
 7.19

mit: Q_{S,kol} die Summe der Wärmeeinträge durch solare Einstrahlung auf die Kollektorfläche

I _S	die mittlere solare Einstrahlung während eines Monats nach DIN V 18599-10 (DIN V 18599-10 2011)				
$F_{sh,ob,k}$	der Verschattungsfaktor durch außen liegende Hindernisse für die Kollektorfläche				
F_{sh}	der Verschattungsfaktor innerhalb der Kollektorkonstruktion				
F_F	Abminderungsfaktor für Rahmen				
A_{kol}	die Gesamtfläche des Kollektors				
α	Absorptionskoeffizient der Oberfläche, die die Sonnenstrahlung aufnimmt				
U _{kol}	Wärmedurchgangskoeffizient des Kollektors zwischen Innenraum und Außenumgebung				
U _{kol,i}	innerer Wärmedurchgangskoeffizient (die widerstand von Hälfte der Luftschicht wird berücksichtigt)				
$\rho_{a}\mathbf{C}_{a}$	die volumenbezogene Wärmespeicherfähigkeit der Luft				
q _{kol}	der Sollwert des Luftvolumenstroms durch den belüfteten Spalt des Kollektors				
к _{kol}	ein Faktor, bezogen auf das Verhältnis der konvektiven Wärmegewinne zur Wärmeverluste von Konvektionsluftkollektoren nach Formel 7.8				
ω	das Verhältnis der Gesamtsonnenstrahlung auf den Kollektor bei offenem Luftspalt zur Gesamtsonnenstrahlung über den gesamten Berechnungsschritt, bestimmt nach Formel 7.6				
F _{n,konv}	Anteil der Zeit, die der Konvektionsluftkollektor im Betrieb ist				
F _{r,k}	der Formfaktor zwischen dem Kollektor und dem Himmel: $F_f = 1$ für waagerechte Kollektor bis 45° Neigung; $F_f = 0,5$ für senkrechte Kollektor größer 45° Neigung				
$\Phi_{\mathrm{r,k}}$	der zusätzliche Wärmestrom aufgrund der vom Kollektor ausgehenden Wärmestrahlung an den Himmel, bestimmt nach Formel 7.3				
t	die Dauer des Berechnungszeitraums				

 $c_{P,a}\rho_a$ kann zu 0,34 [Wh/(m³·K)] gesetzt werden (DIN V 18599-2 2011)

7.3 TGA-Luftkollektoren (Typ 3)

Wärme, die durch Luftkollektoren erzeugt wird, kann in das technische Gebäudekonzept eingebunden und dem Heizsystem zugeführt werden. Die Kopplung an eine Wärmepumpe ist in der Regel notwendig.

7.3.1 TGA-Luftkollektor (transparent/ opak)

Zur Bilanzierung eines TGA-Luftkollektors, der den konvektiven Anteil der generierten Energiemenge an eine Wärmepumpe liefert, wird gemäß DIN 14511-2 (DIN EN 14511-2 2015) und DIN 16147 (DIN EN 16147 2015) die mittlere Primär-Temperatur der Wärmequelle benötigt. Im Falle des Luftkollektors ist daher die mittlere Luftkollektortemperatur im betrachteten Zeitraum notwendig. Die Kollektortemperatur ist u.a. abhängig von der Art der Kollektorkonstruktion und im hohen Maße vom Strahlungsverlauf, kann nur per Simulation deckschichtspezifisch ermittelt werden. Der betrachtete Zeitraum ist abhängig vom jeweiligen Nutzer und der Art der TGA. Die Bilanzierung ist projektspezifisch per thermisch-dynamischer Simulation möglich.

Abb. 7-14: TGA-Luftkollektor mit transparenter Außenschicht

Abb. 7-15: TGA-Luftkollektor mit opaker Außenschicht

8 Vereinfachte Bilanzierung

Zeitgleich zur Erarbeitung detaillierter Bilanzierungsbeiträge für die DIN V 18599 wurde eine vereinfachte Bilanzierung erarbeitet, die es Planern und Bauherren ermöglichen soll, ohne lange Rechenwege und zu ermittelnde Parameter die energetische Wirkung des Kollektors abschätzen zu können. Als Arbeitswerkzeug wurde neben den genannten Referenzen die thermische Gebäudesimulation genutzt. Die Simulationen wurden mit TRNSYS und TRNflow durchgeführt, Programme, mit denen bauphysikalische und strömungstechnische Vorgänge im Gebäude realitätsnah im Jahreszyklus abgebildet werden können.

8.1 Grundlagen/ Voruntersuchungen

Um ein geeignetes Modell in TRNSYS bilden zu können, wurden Voruntersuchungen durchgeführt, um die relevanten Parameter für die Bilanzierung bestimmen zu können.

8.1.1 Modellgeometrie

Es wurden zunächst zwei grundlegend zielführende Raum-Modelle aufgebaut und miteinander verglichen. Dies war notwendig, um zu untersuchen, ob das für die Untersuchungen zu wählende Gebäudemodell hinsichtlich der Forschungsfrage verlässliche und tragfähige Ergebnisse generiert.

Abb. 8-1: Modell1, Luftkollektor mit angeschlossenem 60m³ (3mx4mx5m) großem Raum

Modell 1 besteht aus einem Luftkollektor und einem dahinter liegenden, 20 m² großen Raum mit den Maßen 3m x 4m x 5m. Die Lufttemperatur des Raumes wird auf mindestens 20°C, höchstens 24°C festgesetzt. Durch diese Festlegungen entsteht ein reales Luftkollektorkonzept im abstrakten Modell. Die Energieeinträge sind jedoch auf Grund der Raumtemperaturgrenzen abhängig vom Raumvolumen. Daher wurde mit Hilfe eines Vergleichsmodells überprüft, wie groß die Abweichung der Energieeinträge ist.

Abb. 8-2: Modell2, Ein-Zonen-Luftkollektor Modell (Vergleichsmodell)

Das Vergleichsmodell stellt eine abstrahierte Darstellung eines Luftkollektors dar und dient lediglich zur Evaluation des vorangegangenen Raummodells. Das Vergleichsmodell bildet lediglich einen Luftkollektor ab, die äußere Oberfläche der opaken Schicht weist konstante 20°C auf.

Eingabeparameter für die Simulation in TRNSYS

	Test Reference Year	12- (Stuttgart)
	Elevation [m]	103
dio	Longitude [°]	8,47
TRNStu	Latitude [°]	49,5
	Höhe des Kollektors [m]	3
	Breite des Kollektors [m]	4
PI	Dicke des Luftspalt [m]	0,10
TRNB u	R-Wert des Luftspalt [(m²*K)/W]	0,18

Tab. 8.1: Konstante Eingabeparameter für die Simulation zur Untersuchung der Modellgeometrie und der Speicherzahl in TRNSYS

	Wärmeleitfähigkeit λ [W/(m*K)]		0,25		1	
P	Schichtdicke [m]	0,1		0,3		
TRNBu	Speicherzahl S [kJ/(m³*K)]	450	750	1100	1500	

Tab. 8.2: Variable Eingabeparameter für die opake Schicht, zur Untersuchung der Speicherzahl (siehe Kapiel 8.1.2)

Nur die Luftkollektorfassade mit deren drei Schichten (opake Schicht, transparente Schicht und Luftschicht) wird bauphysikalisch relevant abgebildet, alle anderen Bauteile sind "boundary identical", deren Außenbedingungen werden den Innenbedingungen gleich gesetzt, so dass diese Bauteile keine Energie leiten, weder nach außen noch nach innen.

Als transparente Schicht des Kollektors wird eine Einfachverglasung mit dem U-Wert 5.68 W/(m²K) und einem g-Wert von 0,82 angenommen. Kombiniert mit den variablen opaken Schichteigenschaften ergeben sich für den U-Wert des gesamt Luftkollektors vier verschiedene Werte.

Die Transmissionswärmegewinne, die sich aus der Differenz der Verluste über die opake Schicht ohne und mit solarer Einstrahlung ergeben (QCOMI), werden ausgewertet. So wird ermittelt, wie viele solare Gewinne durch Transmission entstehen können. Die Ergebnisse beziehen sich nur auf die Heizperiode (Oktober bis April). Siehe Kapitel 8.3.1.

Abb. 8-3: Transmissionswärmegewinne pro m²-Kollektorfläche in Abhängigkeit des gesamten U-Wertes des Kollektors und der Speicherzahl des opaken Bauteils (Modell1)

In Abb. 6-3 sind die Transmissionswärmegewinne durch solare Einstrahlung eines Kollektors (Modell 1) in Abhängigkeit seines Gesamtenergiedurchlassgrades abgebildet. Dabei wurde die Speicherzahl der opaken Schicht zwischen 450 und 1500 kJ/(m³*K) variiert.

Mit steigendem U-Wert des Kollektors steigen auch die Transmissionswärmegewinne. Durch den steigenden U-Wert der opaken Schicht und gleichzeitig konstantem U-Wert und g-Wert der transparenten Schicht kann mehr Energie in den Innenraum gelangen.

Modell 2

Abb. 8-4: Transmissionswärmegewinne pro m²-Kollektorfläche in Abhängigkeit des gesamten U-Wertes des Kollektors und der Speicherzahl des opaken Bauteils (Modell 2)

In Abb.6-4 sind die Transmissionswärmegewinne durch solare Einstrahlung eines Kollektors (Modell 2) in Abhängigkeit seines Gesamtenergiedurchlassgrades abgebildet. Dabei wurde die Speicherzahl der opaken Schicht zwischen 450 und 1500 kJ/(m³*K) variiert.

Auch in diesen Simulationen ist der Zusammenhang, wie in Modell 1, zwischen Transmissionswärmegewinnen und U-Wert klar zu erkennen.

Deutlich ist jedoch im Unterschied zu Modell 1, dass die Transmissionswärmegewinne bei geringem U-Wert höher und bei hohem U-Wert geringer sind. Das erklärt sich darin, dass im Modell 1 die Innenraumtemperatur zwischen 20 und 24°C liegt, wobei die Innenwandoberflächentemperatur höher oder niedriger sein kann, als die im Raum eingestellte Temperatur. In Modell 2 liegt die Innenwandoberflächentemperatur konstant bei 20°C. Im letzten Schritt zur Evaluation des Gebäudemodells werden die Kollektorkonstruktionen nach dem Bilanzierungsvorschlag der DIN V 18599 berechnet und mit den zuvor simulierten Ergebnissen verglichen.

Nach folgender Formel werden die Transmissionswärmegewinne berechnet. (vgl. Formel 7.5)

Abb. 8-5: Transmissionswärmegewinne pro m²-Kollektorfläche in Abhängigkeit des gesamten U-Wertes des Kollektors und der Speicherzahl des opaken Bauteils nach DIN V 18599

In Abb.6-5 sind die Transmissionswärmegewinne durch solare Einstrahlung eines Kollektors (nach Norm) in Abhängigkeit seines Gesamtenergiedurchlassgrades abgebildet. Dabei wurde die Speicherzahl der opaken Schicht zwischen 450 und 1500 kJ/(m³*K) variiert. Der Zusammenhang zwischen U-Wert und Transmissionswärmegewinnen ist auch hier deutlich zu erkennen.

Die Ergebnisse werden mit den Ergebnissen aus den beiden Simulationen verglichen, dabei zeigt sich, dass Modell 1 eine für den Forschungszweck akzeptable Übereinstimmung mit der Norm besitzt. Je geringer der U-Wert der opaken Wandschicht, desto höher ist die prozentuale Abweichung.

Abb. 8-6: Abweichung zwischen den Simulationsergebnissen und der Berechnung nach DIN V 18599

Modell 1 zeigt eine bessere Übereinstimmung mit den Ergebnissen der Norm, sodass dieses Modell zur weiteren Untersuchung verwendet wird.

8.1.2 Speicherzahl

mit:

In einem weiteren Simulationspaket wird der Einfluss der Speicherzahl auf die Effizienz der Luftollektorkonstruktionen untersucht. Die Speicherzahl beschreibt, wie viel Energie in einem Kubikmeter eines Stoffes pro Kelvin Temperaturerhöhung gespeichert werden kann. Sie ist das Produkt aus der Wärmespeicherkapazität c_p und der Dichte ρ eines Stoffs.

$$S = \rho C_P$$
 8.1
S Speicherzahl eines Stoffs

ρ Dichte eines Stoffs

 C_{P} Wärmespeicherkapazität eines Stoffs

Die opake Schicht eines Kollektors hat ein gewisses Speichervermögen, das die Funktionsweise vor allem konduktiver Luftkollektoren beeinflussen kann. Je höher die Speicherzahl ist, umso mehr Energie kann in der opaken Wandschicht gespeichert werden und zeitverzögert, antizyklisch wieder abgegeben werden.

Die Eigenschaften des opaken Bauteils werden variiert, um den Zusammenhang zwischen Speicherzahl und Transmissionswärmegewinne festzustellen. (Modellaufbau: siehe Kapitel 8.1.1).

Belegt man die opake Schicht in der Simulationsreihe in Abb.6-5 und 6-6 (Modell1 und Modell2) mit verschiedenen Speicherzahlen, ergeben sich Abweichungen innerhalb der Ergebnisse von max. 0,22%. Der Einfluss der Speicherfähigkeit auf die solaren Gewinne

eines Kollektors kann demnach vernachlässigt werden. Wie in der Berechnungsformel von Modell 3 zu sehen ist, wird die Speicherzahl eines Kollektors in der Bilanzierung nach Norm nicht berücksichtigt, deshalb erhält man auch hier keine Veränderung der Transmissionswärmegewinne durch die Änderung der Speicherzahl (siehe Abb. 6-7).

Das Speichervermögen eines Baustoffs hängt nicht nur von der Speicherzahl sondern auch vom zur für die Speicherung zur Verfügung stehenden Volumen des Bauteils ab. Dieses Volumen errechnet sich aus der Eindringtiefe (d) und der Oberfläche (A). Die Eindringtiefe hängt vor allem von der Wärmeleitfähigkeit λ und der Periodendauer *T* ab.

$$\begin{aligned} \mathsf{d}_{\mathsf{eff},\mathsf{i}} &= \sqrt{2} \left(\frac{\lambda}{\rho \mathsf{C}_{\mathsf{P}}} \right) \left(\frac{\mathsf{T}}{\pi} \right) \\ \mathsf{d}_{\mathsf{eff},\mathsf{i}} & \mathsf{Eindringtiefe} \\ \lambda & \mathsf{Wärmeleitfähigkeit eines Stoffes} \\ \rho & \mathsf{Dichte eines Stoffs} \\ \mathsf{C}_{\mathsf{P}} & \mathsf{Wärmespeicherkapazität eines Stoffs} \\ \mathsf{T} & \mathsf{Periodendauer} \\ \pi & \mathsf{Konstante} \end{aligned}$$

Da für die Bewertung der Energiegewinne durch Kollektoren nur die Heizperiode relevant ist, und in Deutschland die Sonnenscheindauer in den Wintermonaten bei 1,5 - 4 Stunden pro Tag liegt, ergibt sich eine sehr kurze Aufheizdauer der opaken Schicht. Die Speicherzahl ist daher eher unbedeutend und zu vernachlässigen.

8.1.3 Opake Schicht

mit:

Um eine große Bandbreite möglicher Außenwand-Baustoffe abbilden zu können, werden zunächst ihre Eigenschaften und deren Abhängigkeit voneinander untersucht – gemäß Ergebnis aus 6.1.2. werden reale Baustoffe abgebildet, ohne einen besonderen Fokus auf eine erhöhte Speicherfähigkeit zu legen.

Folgende Normen erfassen die Eigenschaften von Materialien und Baustoffen:

```
DIN EN 206-1 (DIN EN 206/A1 2015): Beton-Bauteile
DIN 4166 (DIN 4166 1997): Bauplatten
DIN V 105-100; - 5; -6, (DIN 105-100 2012)
```

DIN EN 771-1 (DIN EN 771-1 2015) in Verbindung mit DIN 20000-401 (DIN 20000-401 2012), DIN 398 (DIN 398 1976), DIN V 4165-100 (DIN EN 4165-001 2015), DIN V 18152-100 (DIN V 18152-100 2005), DIN V 18153-100 (DIN V 18153-100 2005)

Um für die opake Bauteilschicht von Luftkollektoren repräsentative Baustoffe auswählen zu können, wurden die Speicherzahl und die dazugehörige Wärmeleitfähigkeit typischer Baustoffe nach Norm erfasst und in einem Diagramm abgebildet. Es zeigt sich eine Abhängigkeit der beiden Eigenschaften. Auf Grundlage dieser Werte wird eine Tendenzlinie ausgegeben, Baustoffe werden ausgewählt.

Abb. 8-7: Abhängigkeit von Speicherzahl und Wärmeleitfähigkeit von realen Baustoffen

Aus der Tendenzlinie werden acht Baustoffe entnommen, die zur Darstellung des Kollektors herangezogen werden.

Ausgewäh	Ausgewählte Baustoffe						
	λ [w/(m*K)]	S gewählt [kJ/(m ³ *K)]	ρ[kg/m³]	cp [J/(kg*K)]	S nach Tendenzlinie		
1.	0.1	450	450	1000	471.92		
2.	0.3	750	750	1000	752.54		
3.	0.5	1100	1100	1000	1097.36		
4.	0.75	1500	1500	1000	1507.57		
5.	1	1850	1850	1000	1835.62		
6.	1.5	2200	2200	1000	2218.65		
7.	2	2350	2350	1000	2347.30		
8.	2.5	2400	2400	1000	2383.28		

8.1.4 Luftschicht

Um den Einfluss der Luftschichtdicke eines solaren Kollektors zu untersuchen, wird die dicke zwischen 5 und 50 Zentimetern variiert. In der Voruntersuchung wird festgestellt, wie viel Einfluss die Dicke auf den U-Wert des Kollektors und die Energieeinträge hat.

Hierzu wird ein üblicher Kollektor aufgebaut, die Modellgeometrie wird aus Kapitel 8.1.1 übernommen.

Opake Schicht Transparente Schicht							
λ [kJ/(h*m*K)]	cp [kJ/(kg*K)]	ρ [kg/m³]	Dicke [m]	α [-]	TRNSYS Window-ID [-]	g-Wert [-]	U-Wert [W/(m²K)]
3,6	1	1850	0,240	0,6	14002	0,5	1,08

Tab. 8.3: Konstante Eingabeparameter zur Simulation der Luftschichtvoruntersuchung in TRNSYS

Die Luftschichtdicke und der Konvektionsvolumenstrom werden dabei wie folgt variiert.

Luftschicht [m]	0,05	0,10	0,15		0,20	0,25	0,35	0,50
Konvektion [m³/m²]	0			20			100	

Tab. 8.4: Variable Eingabeparamter zur Simulation der Luftschichtvoruntersuchung in TRNSYS

Die Undichtigkeit des Kollektors bleibt, wie in 8.2 beschrieben, bestehen. Eine Änderung der Belüftung ergibt sich jedoch trotzdem über Temperaturschwankungen im Luftspalt.

Abb. 8-8: Abhängigkeit von U-Wert eines Kollektors und Luftschichtdicke

Der effektive, temperaturabhängige U-Wert einer Luftkollektorkonstruktion ändert sich mit der Luftschichtdicke durch den Wärmewiderstand. Der Wärmewiderstand einer Luftschicht wird nach DIN EN ISO 6946 berechnet. Er beschreibt, wie groß der Widerstand einer Luftschicht gegen Wärmeverluste ist. Je höher dieser Widerstand, umso weniger Energie geht verloren und desto geringer ist der U-Wert der Gesamtkonstruktion.

Schaut man sich den dynamischen U-Wert einer Luftkollektorkonstruktion in Abhängigkeit der Luftschichtdicke an, so kann man erkennen, dass der dynamische U-Wert kleiner wird, je schmaler der Luftspalt ist. Je breiter der Luftspalt ist, umso geringer ist die durchschnittliche Lufttemperatur über die Heizperiode und umso größer ist der dynamische U-Wert (siehe Abb.6-10).

Die Wärmemenge, die in Folge einer Temperaturdifferenz zwischen der einen und der anderen Seite eines Bauteils in Richtung Temperaturgefälle fließt, berechnet sich durch Q=U·A·Δ T, also dem Produkt von U-Wert, Wändfläche und Temperaturdifferenz zwischen Innen- und Außenluft der Konstruktion. Im Fall des Kollektors wird der Wärmeaustausch Innenraum betrachtet. Wandfläche zwischen und Luftspalt U-Wert. und Innenraumtemperatur (20°C) bleiben konstant, nur die durchschnittliche Temperatur im Luftspalt ändert sich. Die Wärme fließt immer vom höheren Potenzial zum geringeren. Je geringer nun die Luftspalttemperatur ist, desto größer ist ∆T und desto größer werden auch die Wärmeverluste des Raumes. Höhere Wärmeverluste bedeuten wiederum einen geringeren dynamischen U-Wert.

8.2 Bildung des Referenzmodells

Nachdem die Voruntersuchungen durchgeführt wurden, wird nun aus den Ergebnissen ein geeignetes Referenzmodell zur vereinfachten Bilanzierung gebildet.

8.2.1 Konstante Eingabeparameter

Es wurde ein Referenzraum mit Luftkollektor an der Außenseite abgebildet. Der Raum hat ein Volumen von 60m³ und misst 3m x 4m x 5m. Der Luftkollektor mit 4 m Breite und 3 m Höhe ist nach Süden orientiert.

Um die Wirkweise der Kollektorfassade abbilden zu können, wurden der Fassade Außenbedingungen aufgeprägt (der Kollektor im Modell dem Wetter ausgesetzt), während die anderen Begrenzungsflächen des Referenzraumes keine Verluste oder Gewinne aufweisen (,boundary=identical').

Um die thermische Schichtung innerhalb des Luftkollektors abbilden zu können, wurde dieser in sechs horizontale Abschnitte mit jeweils 0,5m Höhe aufgeteilt. Durch Konvektion im Innenraum des Kollektors entsteht eine Temperaturschichtung, warme Luft steigt nach oben, wobei sich kühlere Luft im unteren Teil sammelt. Die Temperaturschichtung wird detailliert berechnet und abgebildet.

	Höhe des Raums [m]	3
	Breite des Raums [m]	4
	Tiefe des Raums [m]	5
tchUp	Höhe des Kollektors [m]	6*0,5
iild/Ske	Breite des Kollektors [m]	4
TRNBu	Dicke des Luftspalts [m]	0,10
	R-Wert des Luftspalt [(m ² *K)/W]	0,18
	T_Heat Innenraum [°C]	20°C
	T_Cool Innenraum [°C]	24°C

In der folgenden Tabelle sind die konstanten Parameter dargestellt.

Tab. 8.5: Konstante Eingabeparameter zur Simulation des Referenzmodells in TRNSYS

Abb. 6-11 zeigt das SketchUP-Modell des Referenzraumes inklusive der horizontalen Schichtung des Luftkollektors.

Abb. 8-9: SketchUp Modell zum Import in TRNSYS

8.2.2 TRY-Wetterdaten

Die verwedeten TRY-Wetterdaten sind vom Deutschen Wetterdienst bereit gestellte Datensätze, die die 15 Klimaregionen Deutschlands abbilden. Sie enthalten stündliche klimatologische Informationen. Die Wetterdaten bilden ein durchschnittliches Jahr auf Basis der vergangenen 30 Jahre Klimaaufzeichnung ab (1980-2010). Die Test Referenz Jahre dienen laut Deutschem Wetterdienst dem Zweck, klimatologische Randbedingungen zur Simulation von heiz- und raumlufttechnischen Anlagen und des thermischen Verhaltens von Gebäuden zu liefern. In der DIN V 18599 wird mit den TRY-Daten gerechnet (Christoffer, Deutschländer, Webs 2004).

Als Referenzgebiet wurde in diesem Fall Region 12, eine der strahlungsreichsten Regionen, ausgewählt, um das Potenzial eines solaren Luftkollektors aufzeigen zu können.

	Test Reference Year	12- (Stuttgart)
tudio	Elevation [m]	103
TRNS	Longitude [°]	8,47
	Latitude [°]	49,5

Tab. 8.6: Eingabedaten für die Wetterdaten des Deutschen Wetterdienstes zur Simulation in TRNSYS

Da später die Umrechnung aller Ergebnisse auf die jeweiligen Strahlungsdichten der Regionen erfolgen kann, ist die Wahl der TRY-Region an dieser Stelle von untergeordneter Bedeutung.

8.2.3 TRNFlow

Um eine durch Undichtigkeit, Druck- und Temperaturunterschied entstehende Luftbewegung im Kollektor abbilden zu können, wird das TRNSYS Tool TRNFlow genutzt. TRNflow simuliert Strömungen in Abhängigkeit von Druck- und Temperaturunterschieden.

Die sechs verschiedenen Zonen des Luftkollektors werden mit Klappen verbunden, diese sind kontinuierlich zu 100% geöffnet. Zudem werden am obersten und am untersten Ende des gesamten Kollektors je eine ein Zentimeter breite Öffnung, die sich über die gesamte Länge (4m) erstreckt, simuliert. Somit wird die Richtung des Luftvolumenstroms bei hohen Temperaturen definiert und die Undichtigkeit des Kollektors abgebildet.

8.2.4 Konvektion

Es wird ein weiteres Modell zur Auswertung von Konvektionswärmegewinnen aufgebaut. Hierbei wird zusätzlich am oberen und unteren Teil des Kollektors ein Ventilator mithilfe von TRNFlow eingebaut. Der obere Ventilator bringt warme Luft in den Innenraum, durch den unteren Ventilator wird die Luft wieder in den Kollektorzwischenraum gebracht, wo sie dich wieder erwärmen kann.

Regelung des Ventilators:

Der Ventilator schaltet sich ein, wenn die Kollektortemperatur über der Raumtemperatur liegt, die Kollektortemperatur über 20°C liegt und die Raumtemperatur unter 24°C ist. Somit wird sichergestellt, dass der Raum weder überhitzt noch auskühlt.

Der Ventilator schaltet sich wieder ab, wenn die Kollektortemperatur unter die Raumtemperatur fällt, die Raumtemperatur über 24°C liegt oder die Kollektortemperatur unter 20°C fällt.

Dabei werden fünf verschiedene Luftvolumenströme untersucht, sie sind in m³ pro m²-Kollektorfläche und Stunde angegeben.

Luftvolumen-strom (V)							
[m ³ /(m ² .h)]							
	20	40	60	80	100		

8.2.5 Absorbierende Schicht

Die absorbierende Schicht wandelt solare Einstrahlung in Wärmeenergie um, sie ist die nach außen gewandte Seite der opaken Kollektorschicht. Um verschiedene Anstriche abbilden zu können werden drei Absorbtionsgrade simuliert.

Absorbtionsgrad der opaken Schicht (α)				
		[-]		
	0,4	0,6	0,8	

Tab. 8.8: Eingabewerte für den Absorptionsgrad der opaken Schicht zur Simulation des Referenzmodells in TRNSYS

8.2.6 Opake Schicht

Abhängig von der Wärmeleitfähigkeit von Baustoffen werden acht Baustoffe ausgewählt, die zur Simulation des Kollektors verwendet werden. (siehe Kapitel 8.1.3)

8.2.7 Transparente Schicht

Die transparente Schicht eines Kollektors besteht aus Glas oder Kunststoffen wie bspw. Polycarbonatplatten.

Zum einen hat der g-Wert[-] einer transparenten Schicht, also der Energiedurchlassgrad, einen Einfluss darauf, wieviel der einfallenden Solarstrahlung durch die transparente Schicht gelassen wird und somit auf die dahinter liegende absorbierende Schicht fällt. Und zum anderen hat der U-Wert [W/(m²K)], welcher beschreibt, wieviel Wärme im Fall eines Temperaturgefälles durch das Bauteil gelangt, einen Einfluss auf die Energiegewinne des gesamten Kollektors.

	U-Wert und g-Wert der transparenten Schicht (Utr) und (g); (Fenster-ID)						
		[W/(m².K)] und [-]					
U _{tr} =0,70	g=0,294 (12014) g=0,622 (2004)	U _{tr} =0,98 g=0,440 (12006) U _{tr} =2,83 g=0,755 (1302)	U _{tr} =1,08 g=0,499 (14002) U _{tr} =5,68 g=0,855 (1001)	U _{tr} =1,40			

Zur flächendeckenden Simulation wurden sechs verschiedene Fenster untersucht:

Tab. 8.9: Eingabewerte für den U- und g-Wert der transparenten Schicht zur Simulation des Referenzmodells in TRNSYS

8.3 Auswertung

Die in TRNSYS simulierten Ergebnisse werden bezüglich der Fragestellung hinsichtlich dreier Aspekte ausgewertet: Wärmegewinne; Ausnutzungsgrad und dynamischer U-Wert. Im Folgenden werden diese drei Parameter beschrieben.

8.3.1 Transmissions-/Konvektionswärmegewinne

Erstes Modell ohne Strahlungseinwirkung:

Als erstes Modell wird ein Modell ohne Strahlungskomponente erstellt, um die reinen Transmissionswärmegewinne durch Temperaturunterschiede des Wandaufbaus zu erhalten. Hierzu wird in TRNSYS der Output QCOMI ausgegeben.

Zweites Modell mit Strahlungseinwirkung:

Im zweiten Modell wird die Strahlung mit simuliert, der Output QCOMI beschreibt nun den gesamten Wärmeeintrag durch Temperaturunterschied und Strahlungseintrag.

Zieht man nun vom gesamten Wärmeeintrag den Eintrag durch Transmission ab, erhält man die Strahlungskomponente, welche zur Einbindung in die Berechnung nach DIN V 18599-2 verwendet wird um Energieeinträge zu berechnen (solare Wärmeeinträge durch opake Bauteile).

Durch direkte Lüftung mit dem Kollektor entstehen zusätzlich zu den Transmissionswärmegewinnen auch noch Konvektionswärmegewinne. Für die Einträge über Transmission werden die ersten Schritte genau wie in Punkt 1 durchgeführt. Als zweiten Schritt wird ausgegeben, wie viel Wärmeeintrag durch Konvektion erreicht werden kann. Hierzu wird das Ventilatorsignal (0-aus/1-an), die Raumtemperatur (T_R) und die Kollektortemperatur (T_{kol}) unmittelbar vor dem Ventilator ausgegeben.

$$Q_{Konv} = C_{P,Luft} V (T_{kol} - T_R)^*$$
 Signal8.3mit: Q_{Konv} Konvektiver Wärmeeintrag durch die dynamische Simulation $C_{P,Luft}$ Wärmespeicherkapazität der Luft V Volumenstrom vom Luftspalt in die zu beheizende Gebäudezone T_{kol} Temperatur der Luft im Kollektorluftspalt T_R Lufttemperatur der zu beheizende Gebäudezone

Signal Ventilatorsignal

Diese Konvektionswärmegewinne zusätzlichen werden den zu Transmissionswärmegewinnen zur Berechnung nach DIN V 18599-2 addiert.

8.3.2 Ausnutzungsgrad

Der Ausnutzungsgrad beschreibt für einen Kollektor mit bestimmtem Aufbau, wieviel von der auf seine Fläche auftreffenden solaren Energiemenge (hier: südorientierte Fläche -> Stuttgart -> = 427 $kWh/(m^2a)$) auch als Transmissionsund loesamt Konvektionswärmegewinne genutzt werden können.

8.3.2.1 Umrechnung auf abweichende Wetterregionen und Kollektorausrichtungen

Der Ausnutzungsgrad ist unabhängig von Strahlung und Tempertur, er gibt lediglich den Teil der einfallenden Strahlung an der genutzt werden kann.

$$\eta_{kol} = \frac{\left(Q_{tr} - Q_{konv}\right)}{I_{S}}$$
8.4
mit: η_{kol}
 Q_{tr}
Ausnutzungsgrad des Luftkollektors
Transmissionswärmegewinne über die gesamte Heizperiode

Q_{konv} Solare Einstrahlung senkrecht auf die Kollektorfläche über die gesamte Heizperiode I_{S}

Konvektionswärmegewinne über die gesamte Heizperiode

Mit diesem Faktor können Transmissions- und Konvektionswärmegewinne für jegliche Flächen und Neigungen in Abhängigkeit der einfallenden Strahlung berechnet werden. (Eine Beispielrechnung befindet sich in Anlage III)

$$\begin{array}{ll} Q_{tr} + Q_{konv} = \eta_{kol} I_{S} \\ \mbox{mit:} & Q_{tr} & \mbox{Transmissionswärmegewinne über die gesamte Heizperiode} \\ & Q_{konv} & \mbox{Konvektionswärmegewinne über die gesamte Heizperiode} \\ & \eta_{kol} & \mbox{Ausnutzungsgrad des Luftkollektors} \\ & I_{S} & \mbox{Solare Einstrahlung senkrecht auf die Kollektorfläche über die gesamte Heizperiode} \end{array}$$

8.3.3 **Dynamischer U-Wert**

Der dynamische U-Wert beziffert, wieviel Energie in Abhängigkeit von Temperatur- und Strahlungseinwirkung durch den gesamten Kollektor von innen nach außen strömt. Negative U-Werte bedeuten, dass der Wärmefluss nicht vom Innenraum an die Außenluft sondern umgekehrt, vom Luftspalt an den Innenraum erfolgt. Der Kollektor stellt im betrachteten Zeitraum mehr Energie zur Verfügung, als durch das Temperaturgefälle zwischen Innenraumluft und Außenluft verloren geht. Der dynamische U-Wert wird berechnet, indem die gesamten Verluste des Kollektors durch seine Fläche und die mittlere Temperaturdifferenz zwischen Innen und Außen der betrachteten Region (Δ T=13,77K) dividiert werden.

8.3.3.1 Umrechnung auf abweichende Wetterregionen und Kollektorausrichtungen

Der dynamische U-Wert ist in W/(m²K) angegeben, dabei ist er stark von der auftreffenden Strahlung abhängig und bezieht sich daher nur auf die betrachtete Region. Er kann für andere Regionen wie folgt bestimmt werden:

$$U_{kol,dyn,neu} = \frac{U_{kol,dyn} * 13,77 * 5088 * \eta_{kol} * (4270000 - I_{S,neu})}{13,77 * 5088}$$

$$U_{kol,dyn,neu}$$
Der dynamische U-Wert für abweichende Kollektorausrichtungen
$$U_{kol,dyn,neu}$$
Der dynamische U-Wert für den betrachteten Kollektoraufbau in südlicher Orientierung und der

0	kol,dyn	TRY-Wetterregion 12 (Simulationsergebnisse)
η	kol	Ausnutzungsgrad des betrachteten Kollektoraufbaus in südlicher Orientierung und der TRY- Wetterregion 12 (Simulationsergebnisse)
Т		Solare Einstrahlung senkrecht auf die Kollektorfläche über die gesamte Heizperiode

Wobei I_{ges,neu} die jährliche Strahlung auf ein Quadratmeter Kollektorfläche in Wh/m² für die abzubildende Region und Ausrichtung ist.

Die Umrechnung des dynamischen U-Wertes bezieht sich ausschließlich auf die, in dieser Forschungsarbeit produzierten Ergebnisse und darf nicht auf andere Bilanzierungen angewendet werden. (Eine Beispielrechnung befindet sich in Anlage III)

8.4 Simulationsergebnisse

mit:

I_{S.neu}

Als Simulationsergebnisse werden der dynamische U-Wert und der Ausnutzungsgrad von verschiedenen Kollektorkonstruktionen abgebildet. Diese beiden Parameter sind für die Einschätzung der Effizienz einer Kollektorkonstruktion ausschlaggebend.

8.4.1 Konduktionsluftkollektoren (transparent)

In den folgenden Tabellen sind die Auswertungen für die Wärmeeinträge durch Transmission aus 8.3 für verschiedene Kollektorkonstruktionen aufgeführt. Exemplarisch werden die Ergebnisse für die Wetterregion 12 und eine südliche Ausrichtung dargestellt.

Die Umrechnung der Ergebnisse auf andere Wetterregionen und Ausrichtungen ist gemäß Kapitel 8.3 möglich. (Eine Beispielrechnung befindet sich in Anlage III)

In den folgenden Diagrammen werden der dynamische U-Wert und der Ausnutzungsgrad einer Luftkollektorkonstruktion, in Abhängigkeit des U-Wertes des opaken Bauteils (x-Achse) und der Parameter des transparenten Bauteils (Überschrift), gegenüber gestellt.

8.4.2 Konvektionskollektoren (transparent)

In den folgenden Tabellen sind die Auswertungen für die Wärmeeinträge durch Konvektion aus 8.3 für verschiedene Kollektorkonstruktionen aufgeführt. Exemplarisch werden die Ergebnisse für die Wetterregion 12 und eine südliche Ausrichtung dargestellt. Die Umrechnung der Ergebnisse auf andere Wetterregionen und Ausrichtungen sind gemäß Kapitel 8.3 möglich. (Eine Beispielrechnung befindet sich in Anlage III)

In den folgenden Diagrammen werden der dynamische U-Wert und der Ausnutzungsgrad einer Luftkollektorkonstruktion, in Abhängigkeit des U-Wertes des opaken Bauteils (x-Achse) und der Parameter des transparenten Bauteils (Überschrift), gegenüber gestellt.

9 Vergleich vereinfachter Bilanzierung mit rechnerische Bilanzierung

Die Wirkungsgrade der verschiedenen Luftkollektoren wurden durch die Simulation ausgegeben. In diesem Kapitel werden die bilanzierten Luftkollektoren durch die Simulation verifiziert.

9.1 Transmission

Wirkungsgrade, die durch Simulation ausgegeben werden, bilden mit einer geringeren Abweichung die realen Wirkungsweisen ab, als bilanzierte Wirkungsgrade. Die Bilanzierung der Wirkungsgrade der Luftkollektoren werden entsprechend der DIN V 18599-2 (DIN V 18599-2 2011a) monatlich bilanziert. Deshalb sind Eingabedaten wie Strahlung, Außentemperatur, Wärmeübergangswiderstand der Außenoberfläche, äußerer Strahlungswärmetransferkoeffizient und Himmelstemperatur monatlich eingegeben worden. Da sich die Bilanzierung auf monatliche Summen, die Simulation auf stündliche Rechenschritte bezieht, bildet die Simulation die Realität mit einer geringeren Fehlerabweichung ab als die rechnerische Bilanzierung.

Darüber hinaus sind die Bilanzierungsausgabedaten für Luftkollektoren mit dünnerer Außenschicht wegen der hohen monatlichen Wärmeverluste durch Transmission und Strahlung des Luftkollektors zur Umgebung sehr gering.

Die bilanzierten und simulierten Wirkungsgrade der Luftkollektoren wurden verglichen. Der Absorptionsgrad der Außenoberfläche der opaken Schicht des Kollektors wurde hierbei gleich 0,6 gesetzt.

Abb. 9-1: Wirkungsgrade von Konduktionsluftkollektoren mit transparenter Schicht, Utr=0,7 W/(m2K) und g=0,294 durch Bilanzierung und Simulation

Abb. 9-2: Wirkungsgrade von Konduktionsluftkollektoren mit transparenter Schicht, U_{tr} =0,98 W/(m2K) und g=0,44 durch Bilanzierung und Simulation

Abb. 9-3: Wirkungsgrade von Konduktionsluftkollektoren mit transparenter Schicht, U_{tr} =1,08 W/(m2K) und g=0,499 durch Bilanzierung und Simulation

Abb. 9-4: Wirkungsgrade von Konduktionsluftkollektoren mit transparenter Schicht, U_{tr} =1,40 W/(m2K) und g=0,622 durch Bilanzierung und Simulation

Abb. 9-5: Wirkungsgrade von Konduktionsluftkollektoren mit transparenter Schicht, U_{tr} =2,83 W/(m2K) und g=0,755 durch Bilanzierung und Simulation

9.2 Konvektion

Die bilanzierten und simulierten Wirkungsgrade von 5 Typen von Luftkollektoren durch Konvektion mit unterschiedliche Wärmedurchgangskoeffizienten sind verglichen. Die Absorptionsgrad von opaken Schicht ist gleich 0,6 und den Luftaustauch zwischen Luftkollektor und beheizte Raum ist gleich 20 Kubikmeter durch ein Quadratmeter Luftkollektorfläche.

Abb. 9-6: Wirkungsgrade von Konvektionsluftkollektoren mit transparenter Schicht, $U_{tr} = 0,7 \text{ W/(m2K)}$ und g=0,294 durch Bilanzierung und Simulation

Abb. 9-7: Wirkungsgrade von Konvektionsluftkollektoren mit transparenter Schicht, U_{tr} =0,98 W/(m2K) und g=0,44 durch Bilanzierung und Simulation

Abb. 9-8: Wirkungsgrade von Konvektionsluftkollektoren mit transparenter Schicht, U_{tr} =1,08 W/(m2K) und g=0,499 durch Bilanzierung und Simulation

Abb. 9-9: Wirkungsgrade von Konvektionsluftkollektoren mit transparenter Schicht, U_{tr} =1,40 W/(m2K) und g=0,622 durch Bilanzierung und Simulation

Abb. 9-10: Wirkungsgrade von Konvektionsluftkollektoren mit transparenter Schicht, mit U_{tr} =2,83 W/(m2K) und g=0,755 durch Bilanzierung und Simulation

Mit sinkendem U-Wert der opaken Wandschicht sinkt bei Konduktionsluftkollektoren die prozentuale Abweichung der simulierten und berechneten Werte. Die maximale Abweichung liegt im Bereich der untersuchten Ukol-Werte bei 28%.

Mit sinkendem U-Wert der opaken Wandschicht sinkt auch bei Konvektionsluftkollektoren die prozentuale Abweichung der simulierten und berechneten Werte. Die maximale Abweichung liegt im Bereich der untersuchten Ukol-Werte bei 31%.

Die Simulationsergebnisse, die zur Entwicklung einer vereinfachten Bilanzierung herangezogen werden, weisen eine plausible, akzeptable Abweichung zur Bilanzierung auf. Die Bilanzierung liefert bezüglich der Nutzung der Kollektoren geringere Energiemengen, also schlechtere Ergebnisse. Mit der detaillierten Bilanzierung weist man tendenziell geringere Energiemengen aus, ist daher "auf der sicheren Seite".

10 Zusammenfassung

Die thermisch-dynamische Simulation und bauphysikalische Betrachtungen zeigen, dass die Speicherfähigkeit der opaken Wandschicht entgegen der ursprünglichen Annahme für alle untersuchten relevanten U-Wert-Bereiche einen zu vernachlässigenden Einfluss auf die Energiebilanz des Kollektors hat. Die Speicherfähigkeit fließt daher nicht in die rechnerische Bilanzierung ein, fließt jedoch als allerdings nicht ausschlaggebender Teil in die Simulationsergebnisse ein.

Die in die rechnerische Bilanzierung einfließenden Parameter verdeutlichen die Funktionsweise der jeweiligen Luftkollektortypen. Verschattung und Verschmutzung der Kollektoroberfläche reduzieren die möglichen Gewinne von außen – ein teilverschatteter Kollektor führt ebenso zu geringeren solaren Erträgen wie eine verschmutzte transparente Deckschicht, was Auswirkungen auf die Entwurfsarbeit der Architekten haben sollte. Ein hoher Gesamtenergiedurchlassgrad der Deckschicht führt zur hohen Absorption des Lichtes im geschützten Luftspalt. Ein geringer U_{ur}-Wert der Deckschicht reduziert die aus den Gewinnen resultierenden Verluste, ein geringer U_{op}-Wert der opaken Wandschicht reduziert die Nutzbarkeit der rein konduktiv genutzten Gewinne, reduziert jedoch die Verluste des Raumes. Hohe Luftspalttemperaturen erhöhen zwar einerseits die Verluste des angrenzenden Raumes und sorgen, je nach Konstruktion und Ausrichtung, für eine positive Energiebilanz des Raumes, ausgedrückt durch einen negativen dynamischen U-Wert U_{dyn}.

Die vereinfachte Bilanzierung soll Planern und Bauherren helfen, Luftkollektorkonstruktionen in der energetischen Bilanz abzuschätzen, ohne detaillierte Rechnungen anfertigen zu müssen. Mit Hilfe der thermisch-dynamischen Simulation wurden die Energiegewinnmenge Q_{s,kol}, die je nach Nutzung aus konduktiven und konvektiven Anteilen besteht, der dynamische U-Wert U_{dyn}, der die Summe der Wärmeverluste und Gewinne pro Kelvin Temperaturdifferenz und Quadratmeter Bauteil beziffert, sowie der Ausnutzungsgrad verschiedener Luftkollektorkonstruktionen ausgegeben und dargestellt. Die Einschätzung beliebiger Konstruktionen ist anhand der Zahlentafeln für alle 15 TRY-Regionen Deutschlands im Anhang sowie der Umrechnung auf abweichende Kollektorausrichtungen möglich.

11 Ausblick

Diese Arbeit leistet einen Beitrag zur Bilanzierbarkeit einfach konstruierter, in der Wirkungsweise auf Grundprinzipien zerlegbarer Luftkollektorkonstruktionen. Nicht selten werden jedoch energetische Gebäudesysteme entwickelt und gebaut, die komplexe Konstruktionen und spezielle Wärmeübertragungsarten mit das System unterstützender Gebäudetechnik kombinieren.

Das Wohnhaus der Kinderreitschule Weilimdorf von Werner Grosse (5) bspw. führt die in dem Südfassaden- und – dachschrägenluftkollektor erwärmte Luft über den Dachspitz in eine Hypokausten-/Murokausten-Konstruktion, also durch luftdurchstömte Wand- und Deckenbauteile des Vollholzhauses hindurch, und führt diese wieder dem Kollektor zu. Die Wärmeübertragungsfläche grenzt also nicht an den Kollektor, sondern ist räumlich von der Energiegewinnung entkoppelt. Dieses System ist nicht als Ganzes bilanzierbar, da die Wärmeübertragung kollektorfern erfolgt. Bilanzierbar ist der Teil der Gewinne des Luftkollektors, der über Konduktion an die Räume abgegeben wird, die an den Kollektor angrenzen (Konduktions-Luftkollektor).

Ähnlich, jedoch systemisch komplexer, macht es Hans Ruedi Stutz beim Solarhaus Hehli vom Dach (6). Ein hocheffizienter Luftkollektor, einfach konstruiert aus Solarglas mit enorm hohen Gesamtenergiedurchlassgrad und zweiseitig umströmten Absorberblechen, bildet die Dachhaut der ca. 60° steilen süd-west-orientierten Dachschräge. Die warme Luft des Kollektors wird im Dachspitz-Kanal gesammelt und der Gebäudetechnik zugeführt. Mittels eines Wärmetauschers wird Energie auf das Nutzwasser übertragen. Die verbleibende Warmluft wird durch eine Muro-/ Hypokaustenkonstruktion aus flächigen, speichernden Betonhohlsteinen geleitet. Dieses System ist nur durch thermisch-dynamische Simulation bilanzierbar, da an den Luftkollektor kein konditionierter Raum grenzt und die Kollektorluft nicht konvektiv genutzt wird.

Das Punkthaus der Fondation Kybernetik der TU Darmstadt (7) ist von einem Luftkollektor allseitig umhüllt. Die Warmluft steigt in der Fassade auf, wird über das Dach geführt, auf der gegenüberliegenden Seite abgesogen und in einen Steinspeicher im Keller geleitet. Der Steinspeicher soll laut Konzept Restenergien aufnehmen und die Luft des Luftkollektorspaltes vorkonditionieren. Vom Speicher aus gelangt die Luft wieder in den Luftkollektor, so dass ein Luftkollektor-Luftkollektor-Speicher-Kreislauf entsteht. Das Luftsystem wechselt die Richtung, sobald der erste Luftkollektor verschattet und der zweite besonnt ist. Die Wärmeübertragung findet, so das Konzept, räumlich getrennt vom energiegewinnenden Luftkollektor statt. Die Restwärme wird verteilt und zwischengespeichert. Bilanzierbar ist hier alleinig der Teil der direkten Wärmeübertragung per Konduktion des jeweils besonnten Luftkollektors an den dahinterliegenden Raum (Konduktionskollektor).

Derartige komplexe Systeme sind in Gänze rechnerisch nicht bilanzierbar. Mit der im Rahmen dieser Arbeit entwickelten Bilanzierung können allerdings Teile des Systems, die den dargestellten Kollektortypen und Wärmeübertragungsarten entsprechen, detailliert gerechnet werden. Mögliche Synergien, wie bspw. die Nutzung von Restwärme in nicht besonnten Fassadenteilen, die Speicherung der nicht nutzbaren Energie oder das kollektorferne, flächige Verteilen der Warmluft sind nicht abbildbar. Die realitätsnahe Bilanz kann hier weiterhin nur mit Hilfe der thermisch dynamischen Simulation erfolgen.

Die Bilanzierung komplexer Luftkollektor-Systeme im Rahmen der DIN V 18599 sollte daher zukünftig mit spezifisch definierten Eingabeparametern und Randbedingungen möglich sein. Die DGNB akzeptiert mittlerweile die Simulation als Werkzeug der Nachweisführung. Die Definition verbindlicher kollektor-spezifischer Rahmenbedingungen wäre für die Zukunft von besonderem Interesse.

Von besonderem Interesse für die Zukunft ist ebenso die rechnerische Bestimmung des dynamischen U-Wertes von Kollektorkonstruktionen. Die dynamischen U-Werte dieser Arbeit basieren auf der thermisch-dynamischen Simulation und beziehen sich auf konkrete Referenz-Luftkollektorkonstruktionen. Die detaillierte Berechnung wäre jedoch von Nöten, um im Rahmen der Nachweisführung gemäß EnEV solare Gewinne beliebiger Luftkollektoraufbauten im Kontext der jeweiligen Wetterregion und Ausrichtung nicht nur auf der Energiebedarfs-Seite durch Q_{s,kol} einbringen zu können, sondern auch in den H'_T-Wert, unter Berücksichtigung der solaren Gewinne, einfließen zu lassen. Aktuell beschreibt der H'_T-Wert allein die Verluste über die Gebäudehülle.

Die Nutzung der Luftkollektor-Energie durch die Technische Gebäudeausrüstung sollte Thema einer detaillierten, umfangreichen Forschungsarbeit sein.

12 Anlagen

Anlage I Projektübersicht Recherche

Projekt	Architekt	Haustyp	Baujahr	Ort	Verwendung des Kollektors primär aus architektonischen Gründen	Verwendung des Kollektors primär aus energetischen Gründen
Haus der Zukunft	Architheke AG	Raumzellenprototyp	1999	Wildhaus, CH	orunden	х
Solarhaus Hehli vom Dach	Architektur Stutz	Wohnhaus	2003	Dgersheim, CH		X
Passivhaus am Bodensee	Robert Geckeler	Wohnhaus	2011	Langenargen, D		Х
Haus und Atelier Lang-Kroll	Florian Nagler	Wonnhaus mit Atelier	2000-2002	Gleissenberg, D		X
Fachhochschule für Gestaltung	MGF Architekten	Fakultätsgebäude	1999-2001	WiesbaDn. D		······×
Brentwood Air House	Francois Perrin (Air Architecture)	Wohnhaus als Gästehaus	2008	California, US		X
Gründerzentrum für ökologische	Hegger Hegger Schleiff	Industriebau / Verwaltungsbau	1998	Hamm, D		~
Bauberute Informationszentrum Raesfeld	Farwick & Grothe	Informationszentrum	2004	Rasefeld, D		×
Institut für Umweltmedizin und	Pfeifer Roser Kuhn Architekten	Medizinisches Institut	2006	Freiburg, D		
Krankenhaushygiene	Fondation Kithormatik, TU	Webshould	2012	Manahaim B		х
Samerung Funkthaus	Darmstadt	wonnaus	2013	Manimenn, D		х
Sanierung Gartenstadt Freiburg	Fondation Kybernetik, TU	Wohnhaus	2014	Freiburg, D		~
Finanzamt in Schwarzenberg	Darmstadt Mahler, Günster, Euchs	öffentliches Gebäude	1996-1999	Schwarzenberg, D		×
Solarschule Dafins	Walter Unterrainer	Schule	1990	Dafin, AT		x
Mensa Attendorn	Prof. DrIng. H.Höfler	Universitätsgebäude	2009	Attendorn, D		X
Sinotex	Pfeifer Roser Kuhn Architekten	Verteilzentrum	1998	Binzen, D		X
AG Thun in Wimmis		werksgebaude		wimmis, CH		x
McKenzie House	Atelier Workshop	Wohnhaus / Wochenendhaus	2007	Hawkes Bay, NZ		x
Altenteilhaus in Uttenweiler	Bruno Maurer	Wohnhaus	1959, Umbau 2008-2009	Uttenweiler, D		Х
Solarhaus III	Dietrich Schwarz	Wohnhaus	2000	Ebnat-Kappel, CH		X
Luftheizungssystems	UMWELT GmbH	wonnhaus	2002	Friedland, D		x
Energetische Sanierung eines	Forschungsgesellschaft BAU UND	Wohnhaus	2001	Wittenberg, D		
Wohngebäudes in Wittenberg	UMWELT GmbH	Wahahaue	2014	Fraiburg D		X
Minergie-Haus Schlegel-	Hans Ruedi Stutz	Wohnhaus	2003	Weingarten, CH	~~~~~~	^
Rothenberger in Weingarten	·····					х
Einfamilienwohnhaus in Karlsruhe	Hinrich Reynelts	Wohnhaus	2003	Karlsruhe, D		X
Seniorenwohnen Solingen	Pfeifer Kuhn Architekten	Wohnhaus	2012	Solingen D		×
Patchworkhaus Müllheim	Pfeifer Roser Kuhn Architekten	Wohnhaus	2005	Müllheim, D		x
Reihenhausanlage	Walter Unterrainer	Wohnhaus	1998	Batschuns, AT		
Batschuns/Vorarlberg Passivwohnhaus Dr. W	Walter Unterrainer	Wohnhaus	2002	Satteins AT		X
Passivbürohaus Schlossgangl	Walter Unterrainer	Wohnhaus	2002	Steyr, AT		 X
Kinderreitschule Weillimdorf	Werner Grosse	Wohnhaus und Kinderreitschule	2007-2009	Stuttgart, D		X
Kinderkunsthaus	XX Architecten	Ausstellungsgebäude	2001	Rotterdam, NL	X	
Bootshaus Plankel	JOSET FINK	Bootshaus	2002	Flußach, Al	······	
Haus Kellner	Grassner & Zarecky	Einfamilienhaus	1998	Glonn, D	<u>x</u>	
Chameleonhouse	Anderson Anderson Architecture	Einfamilienhaus mit Atelier	2002	Michigan, US	X	
Musikpark Mannheim	motorplan	Existenzgründerzentrum	2004	Mannheim, D	X	
Haus in Sanxenxo	Irisarri + Piñera	Ferienhaus	2002-2003	Padriñán, ES	(X)	
Gewerbehof München-Laim	horevischs buero	Gewerbehof	2007-2010	München D		
Laban Centre	Herzog und de Meuron	Kulturbau	200-2003	London, UK	~~~~~ <u>%</u> ~~~~~~~~~~	
Kunsthaus Bregenz	Peter Zumthor	Kulturbauten	1994-1997	Bregenz, AT	X	
Grand Theater	Gerkan, Marg und Partner	Opernhaus	2009	Chongqing, CN	X	
Ptadfinderhaus	Palais Mai	Ptadtinderhaus	2009	Ottobrunn, D	×	
Saldus Music and Art School	Architects Made	Schulgebäude	2007-2013	Saldus, I V	ŵ	
Grund- und Hauptschule,	Dury und D'Aloisio	Schulgebäude	1999-2001	Streißlingen, D	X	
Erweiterung	Obviotion Molor	Condorbau	3000	Likebet AT		
Wertstoffbof Lindberghstraße	Christian Maler Hess/Talho/Kusmierz	Sonderbau	2000	München D		
Sports Center	ELAP Architectos	Sportanlage	2009	Garrucha, ES	······ x	
Sporthalle Dielingsgrund	Augustin und Frank Architekten	Sporthalle	1973, Sanierung 2010-2011	Berlin, D	x	
Konrad-Adenauer Sporthalle	Wulf & Partner	Sporthalle	2005	Hamm, D	X	
Comtes de Champagne Campus, Troves	Lipsky + Rollet	Studentenwohnheim	2009	Troyes, FR	(X)	
Lagertechnik	Baumschlager und Eberle	Verwaltungs-/Lagergebäude	1993-1994, 2002-2003	Wolfurt, AT	х	
Haus der Bauern	Werkgruppe Lahr	Verwaltungsgebäude	2011-2013	Freiburg, D	Х	
Wohn- und Geschäftshaus	Brandelhuber und Emde, ERA, Schneider	Wohn- und Geschäftshaus	2007-2010	Berlin, D	X	
Le Pommier (CODHA)	GM Architectes Associés	Wohnanlage	2009-2010	Genf, CH	X	
Estudio Gordillo	Abalos & Herreros	Wohnhaus	2002	Madrid, ES	X	
Wohnhaus in Brusino-Arsizio	Andrea Bassi	Wohnhaus	1999-2003	Brusino-Arsizio, CH	X	
Lucky Drops House	Atelier lekuto	Wohnhaus	2004-2005	Iokyo, JP	X	
Sempacher Loft Apartments	Carmezind Gräfensteiner	Wohnhaus	2002	Zürich, CH	ŷ	
	Architects				·	
Casa Trapanese	Celoria Architects	Wohnhaus	2005	Castel San Pietro,	X	
Mimentic House	Dominic Stevens	Wohnhaus	2006	Dromaheir, IE	X	
Einfamilenhaus Stokholm	Felix Jerusalem	Wohnhaus	2004-2005	Eschenz, CH	x	
Wohnkubus mit textiler Hülle	Julia Bergmann mit Kleyer. Koblitz	Wohnhaus	2008	Potsdam, D	X	
Residence in Fukuoka	Kazuniko Oishi architecture atelier	wonnhaus Wohnhaus	2009	Fukuoka, JP	X	
énergie positive	Lipony · Nonot			-, sii, iii	(^)	
Serrewoning Vanderreken-Plas	Verdickt & Verdickt Architecten	Wohnhaus	2006	Asse, BE	X	
wonnprototyp in Biën Hóa	vo i rong Nghia Architects	wonnhaus	2013	ыen нoa, VN	x	

Anlage II Simulationsergebnisse umgerechnet für TRY-Wetterregionen 1-15

In den folgenden Diagrammen werden der dynamische U-Wert und der Ausnutzungsgrad einer Luftkollektorkonstruktion, in Abhängigkeit des U-Wertes des opaken Bauteils (x-Achse) und der Parameter des transparenten Bauteils (Überschrift) für verschiedene Wetterregionen, gegenüber gestellt.

TRY 1- Konduktion

TRY 2- Konduktion

TRY 3- Konduktion

TRY 4- Konduktion

TRY 5- Konduktion

TRY 6- Konduktion

TRY 9- Konduktion

TRY 10- Konduktion

TRY 11- Konduktion

TRY 13- Konduktion

TRY 14- Konduktion

TRY 15- Konduktion

TRY 1- Konvektion

TRY 2- Konvektion

TRY 3- Konvektion

TRY 4- Konvektion

TRY 5- Konvektion

TRY 6- Konvektion

TRY 7-Konvektion

TRY 8- Konvektion

TRY 9- Konvektion

TRY 10- Konvektion

TRY 11- Konvektion

TRY 13- Konvektion

TRY 14- Konvektion

TRY 15- Konvektion

Anlage III- Beispielrechnung

Ein Bestandsgebäude soll saniert werden, als Sanierungskonzept wird eine vorgehängte, transparente Fassade gewählt, die als Konduktionsluftkollektor ausgeführt werden soll. Das Gebäude ist Nord-Süd ausgerichtet und steht in der Region 01 der TRY Wetterdaten. Die Außenwandkonstruktion des Bestandgebäudes ist ein Mauerwerksverband aus 24 Zentimeter dickem Hochlochziegelmauerwerk. Der U-Wert der unsanierten Außenwand beträgt U=1,2 W/(m².K).

Laut EnEV muss ein U-Wert von 0,28 W/(m².K) nachgewiesen werden. Mit einem Luftkollektor kann dieser Wert nicht erreicht werden, weshalb hier der dynamische U-Wert als Vergleichsgröße dient.

Der statische U-Wert eines Kollektors mit einer transparenten Schicht (U=1,08 W/(m².K)) liegt bei 0,51 W/(m².K). Der dynamische U-Wert für die Fassade in Richtung Süden kann aus den Tabellen abgelesen werden:

Der dynamische U-Wert beträgt ca. 0,13 W/(m².K), also deutlich unter den Normbedingungen. Der Wärmeeintrag über den Konduktionsluftkollektor beträgt ca. 38 kWh/m².HP. Über die folgende Berechnungsformel kann der dynamische U-Wert auch für andere Himmelsrichtungen berechnet werden. (vgl. Formel 8.6)

$$U_{kol,dyn,neu} = \frac{U_{kol,dyn} * 13,77 * 5088 + \eta_{Kol} * (I_{ges} - I_{ges,neu})}{13,77 * 5088} \left[\frac{W}{m^2 K}\right]$$
$$\eta_{Kol} = \frac{Q_{S,kol}}{I_{ges}} [-] \quad ; \quad I_{ges} = 295,39 \ kWh/m^2$$

Wobei

Die Strahlungsdaten werden hierzu aus der DIN 18599-10 entnommen (Süd: 295,39 kWh/m².HP; Ost: 230.59 kWh/m².HP; West: 178.32 kWh/m².HP; Nord: 124.704 kWh/m².HP).
Über η_{Kol} können auch die Wärmegewinne des Kollektors auf verschiedene Flächen berechnet werden (vgl. Formel 8.5):

$$Q_{S,kol} = \eta_{Kol} \cdot I_{ges,neu} \left[\frac{kWh}{m^2 HP} \right]$$

	U _{dyn} [W/(m²K)]	Q _{s,op} [kWh/(m²HP)]	Q _{s,kol} [kWh/(m²HP)]
Ost	0.25	6.1	29.7
Nord	0.44	3.0	16.0
West	0.34	4.6	22.9
Süd	0.13	8.0	38.0

Abb. III-1:Berechnung von U_{dyn} und den solaren Gewinnen $Q_{S,kol}$ der sanierten Fassade mit Kollektor mit verschiedenen Ausrichtungen im Vergleich zu den solaren Gewinnen der unsanierten opaken Fassade $Q_{S,op}$ nach DIN V 18599-2

Auch auf der Ostseite könnte ein Konduktionsluftkollektor angebracht werden, der dynamische U-Wert liegt nach der Formel hier bei 0,25W/m²K. Auf Nord- und Westseite ist es dementsprechend nicht sinnvoll ein Konduktionsluftkollektor anzubringen, der dynamische U-Wert wird hier auf jeden Fall über die Vorgabe der EnEV kommen.

Der Vergleich von unsanierter zu sanierter Kollektorfassade zeigt deutlich die steigenden solaren Wärmegewinne durch den Luftkollektor von bis zu 533% in nördlicher Orientierung und 475% in südlicher Orientierung.

кеп		
n sind allgemein nach Gleichung (12) zu ermitteln:	ק	
bei $\theta_i > \theta_j$ (12)		
effizient zwischen der Gebäudezone und einem angrenzenden Bereich; eratur der Gebäudezone nach 6.1;		
nonatliche Außentemperatur bzw. die durchschnittliche Temperatur in einer angrenzenden Zone; nungsschritts (t = 24 h)	I	
bei $\theta_i > \theta_k$ (13)	1	
peffizient für Lüftung von außen, von einer anderen Gebäudezone oder durch eine Lüftungsanlage;		3 •
eratur der Gebaudezone nach 6.1; monatliche Außentemperatur [] nungeschrifte (t = 24.b)		
nungssumus (t = 24 ti)	1	
_{sods} (15)	1	
i Kunisysteme nach 6.5.5 (); i Geräte oder Maschinen nach 6.5.3; in die Gehäudezene eineehersche Gitter [] nach 6.5.4		
trahlungsverluste		
	-	
gt nach 6.4.2.		
der Nutzungstage	1	
der Nichthutzungstage		
tzungs- und Nichtnutzungstage		
	1	
solarer Finstrahlung		
	٦	
ieeinträge durch solare Einstrahlung durch transparente Bauteile; ieeinträge durch solare Einstrahlung auf opake Flächen;		•
	1	
llen		
n sind allgemein nach Gleichung (18) zu ermitteln:	-	
(18)		
ffizient zwischen der Gebäudezone und einem angrenzenden Bereich; eratur der Gebäudezone nach 6.1;		1
nonatliche Außentemperatur bzw. die durchschnittliche Temperatur der angrenzenden Gebäudezone; nungsschritts (t = 24 h)		
	-	
aigemein nach Gleichung (19) zu ermitteln.	7	
(19)		5
effizient für Lüftung nach außen [] oder durch eine Lüftungsanlage (siehe 6.3); aratur der Gebäudezone nach 6.1:		•
nonatliche Außentemperatur bzw. die durchschnittliche Temperatur der Zuluft der Lüftungsanlage [] nungszeitraums.		
-	-	

Untersuchung zur rechnerischen Bilanzierung solarer Luftheizsysteme und -konstruktionen Seite 14 von 147

 [] Der Wärr aus den Wär 	metransferkoeffizient H _{r, i} st rmedurchgangskoeffizienten der einzelnen Bauteile	DIN EN 150 157 63.2006-04	
und deren Fi unter Berück Vereinfachen	lacnen nach Din Ein ISU 13/89 und Din Ein ISU 133/0 ksichtigung linienförmiger und punktförmiger Wärmebrücken zu ermitteln. nd können die Wärmebrücken pauschal angesetzt werden.	4 Spezifischer Transmissionswarmedurchgangskoeffizient 4.1 Grundgleichung	
vereiniachen		[]	
6.3 Lüftungs 6.3.1 Infiltrat	swärmesenken/-quellen ation	$H_{T} = \frac{H_{D}}{H_{0}} + H_{g} + H_{U} + H_{A} $ (1)	4.3 Direkte Transmission zwischen Innenraum und Außenumgebung
[]		Dabei ist	[]
Q _{v,inf} = H _{v,inf} ($(\theta_i - \theta_e)$ t für $\theta_i > \theta_e$ (Wärmesenke) (56)	H _p der direkte Wärmedurchgangskoeffizient, in W/K, zwischen beheiztem oder gekühltem Raum und der	
$Q_{V,inf} = H_{V,inf}$	$(\theta_{e} - \theta_{i})$ t für $\theta_{i} < \theta_{e}$ (Wärmequelle) (57)	Adjenningebung durch die Gebaddendule (), der stationäre Wärmedurchgangskoeffizient, in W/K, über das Erdreich [];	Dabei ist
Dabei ist		H _u der spezifische Transmissionswarmedurchgangskoeffizient, in W/K, durch unkonditionierte Raume []; H _A der spezifische Transmissionswärmedurchgangskoeffizient, in W/K, an angrenzenden Gebäuden [].	A die Fläche des Bauteils i der Gebäudehülle, in m ² [];
H _{V,inf} der W θ _i die Bil	varmetransterkoeffizient tur die Intilfration; ilanz-Innentemperatur der Gebäudezone [];		U der Wärmedurchgangskoeffizient des Bauteils i der Gebäudehülle, in W/(m ² ·K); I die Länge der linienförmigen Wärmebrücke k, in m;
θ die du t der Be	urchschnittliche monatliche Außentemperatur; ierechnungszeitraum (t = 24 h).		 Ψ[*] der längenbezogene Wärmedurchgangskoeffizient, in W/(m·K) [] * v. der punktbezogene Wärmedurchgangskoeffizient, in W/K, der punktförmigen Wärmebrücke i []
[]			
$H_{V,inf} = n_{inf} V c$	$c_{p,a} \rho_a$ (58)	_ <u>_</u>	
Dabei ist n der Ta	anesmittelwert des Infiltrationsluftwechsels nach Gleichung (59) hzw. (60):	r	
V das No	Nettoraumvolumen; nozifische Wärnekanazifät von Luft:	DIN EN ISO 13790:2008-09	
ρ _a die Die	ichte von Luft.		Anhang E (normativ) Wärmetransfer und solare Wärmeeinträge besonderer Bauteile
c _{p,a} ρ _a ist zu	u,34 wn/(m ⁻ · κ) zu setzen.	11.3.2 Wärmestrom durch solare Einträge je Bauteil	- []
6.3.2 Fenste []	erlüftung	[]	F 3 Onake Bauteile mit transparenter Dämmung
Q _{V min} = H _{V min}	$(\theta_i - \theta_\mu)$ t für $\theta_i > \theta_\mu$ (Wärmesenke) (66)	$\Phi_{\text{sol}, k} = F_{\text{sh}, b, k} \cdot \frac{A_{\text{sol}, k}}{A_{\text{sol}, k}} \cdot I_{\text{sol}, k} - F_{r, k} \cdot \Phi_{r, k} $ (43)	E.3.2.4 Berechnungsverfahren
bzw. nach Q = H	$(\theta_{-} - \theta_{-})$ t für $\theta_{-} < \theta_{-}$ (Wärmequelle) (67)		Die wirksame Kollektorfläche für die Ausrichtung j und einen Monat m ergibt sich nach:
∽v,win – Hv,win		der Verschattungstaktor durch außen liegende Hindernisse [] der Oberfläche k, bestimmt nach 11.4.4; A _{solk} die wirksame Kollektorfläche der Oberfläche k [], ermittelt nach [] 11.3.4 (opake Bauteile) und Anhang E [];	$ A_{\text{pol},m} = A \cdot F_{\text{sh}} \cdot (1 - F_{\text{p}}) \cdot U / U_{\text{ts}} \cdot g_{\text{t},m} $ (E.8)
H _{V,win} der W	Värmetransferkoeffizient für Fensterlüftung nach Gleichung (68), für Wohngebäude [] nach Gleichung (69) [];	I solk die solare Bestrahlungsstärke [] ermittelt nach Anhang F[]; I F _{r,k} der Formfaktor zwischen dem Bauteil und dem Himmel, bestimmt nach 11.4.6;	 [dabei ist
θ die Bil	Iranz-minentemperatur der Gebaudezone [], urchschnittliche monatliche Außentemperatur;	Φ _{rk} der zusätzliche Wärmestrom aufgrund der [] Wärmestrahlung an den Himmel, bestimmt nach 11.3.5 [].	A Gesamtfläche des Bauteiles;
t die Da []	auer des Berechnungszeitraums (t = 24 h).	· · · · · · · · · · · · · · · · · · ·	F _{ah} Verschattungsfaktor F ₋ Abminderungsfaktor [] (Rahmenflächenanteil)
H _{v.win} = n _{win} V	/ c _{p.a} p _a (68)		U Wärmedurchgangskoeffizient des Bauteils zwischen Innenraum und Außenumgebung; U äußerer Wärmedurchgangskoeffizient des Bauteils von der Oberfläche die dem transparenten
Dabei ist	µа • а • • •		Dämmprodukt zugewandt ist, nach außen;
n _{win} der mi	nittlere tägliche Fensterluftwechsel nach den Gleichungen (73), (77) oder (78);		g, wirksamer solarer Gesamtenergiedurchlassgrad des transparenten Dammproduktes.]
cp,a die sp	pezifische Wärnekapazität von Luft;		
pa die Die	calle von Luit.		E.4. Belüftete Solarwände (Trombewände)
6.3.3 Mechai []	anische Lüftung		E.4.2.4 Derechnungsvenahren
Q., . = H	$(\theta, -\theta_{max})$ t für $\theta > \theta_{max}$ (Wärmesenke) (86)		
bzw. nach Q = H	$(\theta - \theta) t \text{fir } \theta < \theta (Wärmequelle) (87)$		a) wenn der belüftete Spalt von einer opaken äußeren Schicht bedeckt ist, gilt:
Dabei ict	ada vymeda v		$A_{sol} = A_{sw} \cdot \alpha \cdot F_{sh} \cdot (1 - F_{F}) + U_{0} / h_{a} \cdot (1 + (U_{0} / U_{1}^{2}) \cdot \rho_{a} c_{a} \cdot (q_{waw} / A_{sw}) \cdot A_{sw} \cdot \omega) $ (E.15)
H _{v,mech} der W	Värmetransferkoeffizient für mechanische Lüftung nach Gleichung (88);		[dabei ist
	italizamientemperatur der Gebaudezone, [] ittere Temperatur der Zuluft nach den Gleichungen (95) bis (98);		A _{sw} die Fläche der belüfteten Solarwand d. Absorbionskoeffizient der Oberfläche binter dem Luftsnalt:
t die Da []	auer des Berechnungszeitraums (t = 24 h).		F Abminderungsfaktor für die Verschattung, berechnet nach 11.4.3;
H _{v,mech} = n _{mech}	$_{ah}Vc_{p,a}\rho_{a}$ (88)		U Wärmedurchgangskoeffizient der Wand [E.17]
Dabei ist			U innerer Wärmedurchgangskoeffizient (E.11); o die vergene Societieffizient (E.11);
n _{mech} der üb V das No	ber den Tag gemittelte Luftwechsel durch die mechanische Lüftungsanlage []; Nettoraumvolumen;		p _a c _a oue volumenotezogene speicherrangkeit von Luit; q _{vesw} Luftvolumenstrom durch den belüfteten Luftspalt
c _{p,a} die sp ρ _a die Die	pezifische Wärmekapazität von Luft; ichte von Luft.		 μω das Verhältnis der Gesamtsonnenstrahlung auf das Bauteil bei offenem Luftspalt zur Gesamtsonnenstrahlung über den gesamter Berechnungsschritt;]
б.3.5 Luftwe []	ecnsei zwischen Zonen		
$Q_{V,z} = H_{V,z} \left(\theta_i \right)$	$ -\theta_{j}\rangle$ t für $\theta_{j} > \theta_{z}$ (Wärmesenke) (102)		b) wenn der Luftspalt durch eine Verglasung abgedeckt ist:
bzw. nach Q _{vz} = H _v , (θ	$ -\theta $) t für $\theta_i < \theta_j$ (Wärmequelle) (103)		$A_{sol} = A_{sw} \cdot \alpha \cdot F_{sh} \cdot F_{F} \cdot g_{w} \cdot (U_{0} \cdot R_{e} + (U_{0}^{2} \cdot R_{e}) / (U_{1} \cdot U_{e}) \cdot \rho_{a} c_{a} \cdot (q_{w,sw} / A) \cdot \kappa_{sw} \cdot \omega) $ (E.18)
Dabei ist			[dabei ist
H _{v,z} der Lü θ die Bil	üftungswärmetransferkoeffizient; ilanz-Innentemperatur der Gehäudezone. Bi hinach 6.1.2 für die Heizwärmehilanz hzw. Bild nach 6.1.3 für die Kühlhilanz		A _{se} die Fläche der belüfteten Solarwand g Absorptionskoeffizient der Oberfläche binter dem Luftspalt
θ_z die du	urchschrittliche Temperatur (Bilanz-Innentemperatur) in der Zone, aus der die Luft eintritt; auer des Berechnungszeitraumes (1 = 24 h)		F _{ah} Abminderungsfaktor für die Verschattung, berechnet nach 11.4.3;
[]	uuor uuo boroominingozaikaumaa (t = 24 m).		g solarer Gesamtenergiedurchlassgrad der Verglasung über dem Luftspalt;
H _{V,z} = V _{z,d} c _{p,a}	_a ρ _a (104)		0 warmedurchgangskoemzient der wand [E. 17]; Bild E.2 Weg des Luftstroms in einer heldfleten Solareare R der äußere Wärmedurchlasswiderstand der Wand zwischen Luftspalt und Außenumgebung;
Dabei ist			U, innerer Wärmedurchgangskoeffizient [E.11]; U, äußerer Wärmedurchgangskoeffizient [E.11];
V _{z,d} der eir c _{na} die sp	intretende Volumenstrom der benachbarten Zone im Mittel über den Tag; pezifische Wärmekapazität von Luft;		$ \rho_a c_a $ die volumenbezogene Speicherfähigkeit von Luft; $ q_{wax} $ Luftvolumenstrom durch den belüfteten Luftspalt;
$\rho_a^{P,a}$ die Die	ichte von Luft.		A Gesamtfläche des Bauteils; kder nach Gleichung E.13 festoelegte Faktor:
			ω das Verhältnis der Gesamtsonnenstrahlung auf das Bauteil bei offenem Luftspalt zur Gesamtsonnenstrahlung über den gesamter Berechnungsschrift 1
6400-1	Wärmopisteige über onske Dautaile		
0.4.2 Solare	warmeemtrage über opake Bautene		
[]			
Q _{S,opak} = R _{se} ·	$\mathbf{U} \cdot \mathbf{A} \cdot (\alpha \cdot \mathbf{I}_{s} - \mathbf{F}_{r} \cdot \mathbf{h}_{r} \cdot \Delta \theta_{es}) \cdot \mathbf{t} $ (115)		E.5. Belüftete Bauteile der Gebäudehülle E.5.2.3 Berechnungsverfahren
Dabei ist Rder	er äußere Wärmeübergangswiderstand;		
U der	er Wärmedurchgangskoeffizient des Bauteils;		a) wenn der belüftete Spalt von einer onaken äußeren Schicht bedeckt ist dilt
α de	er Absorptionskoeffizient des Bauteils für Solarstrahlung (Standardwerte nach Tabelle 8)		a) we in the obtained oper tension of parent autorient operations (g_{1} / h_{1} / h_{2}). (f_{2} / h_{1} / h_{2}), (f_{2} / h_{1} / h_{2}), (f_{2} / h_{1} / h_{2}), (f_{2}), (f_{2} / h_{2}), (f_{2} / h
F, der	e groupe commenentsuantang un die Onentitierung uer bauteintache nach DIN V 18599-10 ar Formfaktor zwischen dem Bauteil und dem Himmel []		$P_{sd} = A \cdot u \cdot r_{sh} \cdot (v \cdot r_{F}) \cdot U_{0} / U_{e} \cdot (1 + (U_{0} / U_{1}^{*}) \cdot P_{a} C_{a} \cdot (U_{v,sw} / A) \cdot K_{sw}) $ (E.20)
n, der Δθ _{er} die	er ausere Abstrahlungskoeffizient nach Gleichung (117) e mittlere Differenz zwischen der Temperatur der Umgebungsluft und der scheinbaren Temperatur des Himmels []		[]
t die	e Dauer des Berechnungszeitraumes (t = 24 h)		b) wenn der Luftspalt durch eine Verglasung abgedeckt ist:
[] Weitere so	solare Wärmeeinträge über belüftete Solarwände (Trombewände) lüftete Bauteile der Gebäudehülle (dynamische Wärmedämmung)		$A_{\perp} = A \cdot \alpha \cdot F_{\perp} \cdot (1 \cdot F_{\perp}) \cdot \alpha \cdot (U_{\perp} \cdot R_{\perp} + (U_{\perp}^2 \cdot R_{\perp})/(U \cdot U_{\perp}) \cdot \alpha \cdot c_{\perp} \cdot (\alpha - A) \cdot \kappa_{\perp} \cdot (F_{\perp}^{2})$
	ISO 13790 zu entnehmen		

Literaturverzeichnis

Chiou, El-Wakil, Duffie 1965 CHIOU, J. P. ; EL-WAKIL, M. M. ; DUFFIE, J. A.: *A slit-and -expanded aluminum-foil matrix solar collector.* In: *Solar Energy* 9 (1965), Nr. 2, S. 73–80

Christoffer, Deutschländer, Webs 2004 *Testreferenzjahre von Deutschland für mittlere und extreme Witterungsverhältnisse TRY*. Offenbach a. Main : DWD, 2004. – ISBN 9783881483988

DIN 105-100 2012: Mauerziegel – Teil 100: Mauerziegel mit besonderen Eigenschaften

DIN 20000-401 **2012:** Anwendung von Bauprodukten in Bauwerken – Teil 401: Regeln für die Verwendung von Mauerziegeln nach Ausführungsbeispiele

DIN 398 1976: Hüttensteine Vollsteine, Lochsteine, Hohlblocksteine

DIN 4166 1997: Porenbeton, Bauplatte, Planbauplatte

DIN EN 14511-2 **2015:** *Luftkonditionierer, Flüssigkeitskühlsätze und Wärmepumpen für die Raumbeheizung und kühlung und ProzessKühler mit elektrisch angetriebenen Verdichtern – Teil 2: Prüfbedingungen;*

DIN EN 16147 **2015**: Wärmepumpen mit elektrisch angetriebenen Verdichtern – Prüfungen und Anforderungen an die Kennzeichnung von Geräten zum Erwärmen von Brauchwarmwasser;

DIN EN 206/A1 2015: Beton - Festlegung, Eigenschaften, Herstellung und Konformität;

DIN EN 410 **2011:** Glas im Bauwesen – Bestimmung der lichttechnischen und strahlungsphysikalischen Kenngrößen von Verglasungen

DIN EN 4165-001 **2015**: Luft- und Raumfahrt – Elektrische Rechtecksteckverbinder in modularer Bauweise – Betriebstemperatur 175 °C konstant – Teil 001: Technische Lieferbedingungen; Deutsche und Englische Fassung FprEN 4165-

DIN EN 771-1 2015: Festlegungen für Mauersteine – Teil 1: Mauerziegel;

DIN EN 832-1 2003: Wärmetechnisches Verhalten von Gebäuden- Berechnung des Heizenergiebedarfs des Gebäudes

DIN EN ISO 13789 **2008**: Wärmetechnisches Verhalten von Gebäuden – Spezifischer Transmissions- und Lüftungswärmedurchgangskoeffizient – Berechnungsverfahren

DIN EN ISO 13790 2008: Energieeffizienz von Gebäuden – Berechnung des Energiebedarfs für Heizung und Kühlung

DIN EN ISO 6946 **2008**: Bauteile – Bauteile – Wärmedurchlasswiderstand und Wärmedurchgangskoeffizient – Berechnungsverfahren

DIN EN ISO 7345 1996: Wärmeschutz- Physikalische Größen und Definitionen

DIN V 18152-100 **2005:** Vollsteine und Vollblöcke aus Leichtbeton – Teil 100: Vollsteine und Vollböcke mit besonderen Eigenschaften

DIN V 18153-100 2005: Mauersteine aus Beton (Normalbeton) – Teil 100: Mauersteine mit besonderen Eigenschaften

DIN V 18599-10 **2011:** Energetische Bewertung von Gebäuden – Berechnung des Nutz-, End- und Primärenergiebedarfs für Heizung, Kühlung, Lüftung, Trinkwarmwasser und Beleuchtung – Teil 10: Nutzungsrandbedingungen, Klimadaten

DIN V 18599-2 **2011:** Energetische Bewertung von Gebäuden – Berechnung des Nutz-, End- und Primärenergiebedarfs für Heizung, Kühlung, Lüftung, Trinkwarmwasser und Beleuchtung – Teil 2: Nutzenergiebedarf für Heizen und Kühlen von Gebäudezonen

Duffie, Beckman 2013 DUFFIE, John A. ; BECKMAN, William A.: *Solar engineering of thermal processes.* 4. Aufl. Hoboken : Wiley, 2013. – ISBN 1118433483

Hamid, Beckman 1971 HAMID, Y. H.; BECKMAN, W. A.: Performance of Air-Cooled Radiatively Heated Screen Matrices. In: Journal of Engineering for Power 93 (1971), Nr. 2, S. 221

Hollands, K. G. T., **Shewen 1981** Hollands, K. G. T. ; SHEWEN, E. C.: *Optimization of Flow Passage Geometry for Air-Heating, Plate-Type Solar Collectors.* In: *Journal of Solar Energy Engineering* 103 (1981), Nr. 4, S. 323

Neeper 1979 NEEPER, D. A.: Analysis of matrix air heaters. In: Sun II; Proceedings of the Silver Jubilee Congress, Atlanta (1979), S. 298–301

Selçuk 1971 SELÇUK, K.: *Thermal and economic analysis of the overlapped-glass plate solar-air heater.* In: *Solar Energy* 13 (1971), Nr. 2, S. 165–191

VANITA THAKKAR VANITA THAKKAR: SOLAR ENERGY TECHNOLOGY. VARNAMA, VADODARA

Werner J. Platzer **2000** Werner J. Platzer (Hrsg.); Fachverband Transparente Wärmedämmung e.V. (Mitarb.): Bestimmung des solaren Energiegewinns durch Massivwände mit transparenter Wärmedämmung : Richtlinie des Fachverbandes Transparente Wärmedämmung e.V., 2000 (2000)