

F 2976

Norbert Sack, Ansgar Rose

Untersuchungen zum Einfluss der Größe des Scheibenzwischenraums auf die Dauerhaftigkeit von hochwärmedämmendem Mehrscheiben-Isolierglas

Fraunhofer IRB Verlag

F 2976

Bei dieser Veröffentlichung handelt es sich um die Kopie des Abschlussberichtes einer vom Bundesministerium für Verkehr, Bau und Stadtentwicklung -BMVBS- im Rahmen der Forschungsinitiative »Zukunft Bau« geförderten Forschungsarbeit. Die in dieser Forschungsarbeit enthaltenen Darstellungen und Empfehlungen geben die fachlichen Auffassungen der Verfasser wieder. Diese werden hier unverändert wiedergegeben, sie geben nicht unbedingt die Meinung des Zuwendungsgebers oder des Herausgebers wieder.

Dieser Forschungsbericht wurde mit modernsten Hochleistungskopierern auf Einzelanfrage hergestellt.

Die Originalmanuskripte wurden reprotechnisch, jedoch nicht inhaltlich überarbeitet. Die Druckqualität hängt von der reprotechnischen Eignung des Originalmanuskriptes ab, das uns vom Autor bzw. von der Forschungsstelle zur Verfügung gestellt wurde.

© by Fraunhofer IRB Verlag

2016

ISBN 978-3-8167-9647-3

Vervielfältigung, auch auszugsweise, nur mit ausdrücklicher Zustimmung des Verlages.

Fraunhofer IRB Verlag Fraunhofer-Informationszentrum Raum und Bau

Postfach 80 04 69 70504 Stuttgart

Nobelstraße 12 70569 Stuttgart

Telefon 07 11 9 70 - 25 00 Telefax 07 11 9 70 - 25 08

E-Mail irb@irb.fraunhofer.de

www.baufachinformation.de

www.irb.fraunhofer.de/bauforschung

FB

ift-FORSCHUNGSBERICHT Oktober 2015

Untersuchungen zum Einfluss der Größe des Scheibenzwischenraums auf die Dauerhaftigkeit von hochwärmedämmendem Mehrscheiben-Isolierglas

Abschlussbericht

Thema	Untersuchungen zum Einfluss der Größe des Scheiben- zwischenraums auf die Dauerhaftigkeit von hochwärme- dämmendem Mehrscheiben-Isolierglas			
Kurztitel	Dauerhaftigkeit MIG			
Gefördert durch	Forschungsinitiative Zukunft Bau des Bundesinstitutes für Bau-, Stadt- und Raumforschung (Aktenzeichen: II 3-F20-12-1-156 / SWD-10.08.18.7-13.35)			
	Die Verantwortung für den Inhalt des Berichts liegt bei den Autoren.			
Forschungsstelle	ift gemeinnützige Forschungs- und Entwicklungsgesellschaft mbH Theodor-Gietl-Straße 7–9 83026 Rosenheim			
Bearbeiter	Dr. Ansgar Rose			
Projektleiter	DiplPhys. Norbert Sack			
Institutsleitung	Prof. Ulrich Sieberath			

Rosenheim, Oktober 2015

Inhaltsverzeichnis

Zus	sammenfassung	I
Abs	stract	v
1	Einleitung	1
1.1	Motivation / Ziele	1
1.2	Ausgangslage	2
1.3	Projektgruppe	3
2	Untersuchungsprogramm	5
2.1	Einfluss von Scheibenabstand und Scheibendicke auf die Randlast	5
2.2	Prüfung der Dauerhaftigkeit	8
2.3	Untersuchungskonzept	8
3	Experimentelle Untersuchungen	11
3.1	Probekörper	11
3.2	Durchführung	12
3.3	Auswertung der Messungen und Einzelergebnisse	14
3.4	Messunsicherheiten / -fehler	16
4	Ergebnisse	17
4.1	Trockenmittelbefüllung	17
4.2	Anfangsbeladung	18
4.3	Feuchtigkeitsaufnahmefaktor I	19
4.4	Zubeladung durch Alterung	21
4.5	Dickenänderungen	23
4.6	Visuelle Inspektion der Probekörper	25
5	Schlussfolgerungen und Empfehlungen	35
6	Literaturverzeichnis	37
7	Danksagung	39
Anl	nang: Einzelergebnisse der Hersteller	41

Zusammenfassung

Bei der Verbesserung des baulichen Wärmeschutzes kommt den transparenten Bauelementen eine wichtige Rolle zu. Eine deutliche Verringerung des Wärmedurchgangskoeffizienten von Fenstern und Fassaden kann durch die Verwendung von Dreischeiben-Wärmedämmglas erreicht werden. Hat ein Zweischeiben-Wärmedämmglas mit einem Scheibenzwischenraum (SZR) von 16 mm, Argonfüllung und einer Iow-e-Beschichtung mit einem Emissionsgrad von $\varepsilon = 0,03$ einen Wärmedurchgangskoeffizienten von U_g = 1,1 W/(m²K), so lässt sich mit einem optimierten Dreischeibenaufbau ein Wärmedurchgangskoeffizient von U_g = 0,5 W/(m²K) realisieren. Dazu sind allerdings Scheibenzwischenräume von 18 mm erforderlich.

Konstruktionsbedingt (hermetische Versiegelung) führen Änderungen des Luftdrucks und/oder der Temperatur im Mehrscheiben-Isolierglas zu Druckunterschieden zwischen dem Scheibenzwischenraum und der Atmosphäre und somit zu Klimalasten auf Glas und Randverbund. Die Höhe dieser Klimalasten steigt mit der Größe des SZR und der Scheibendicke an. Die Wirkung einer erhöhten Klimalast auf die Scheiben lässt sich mit anerkannten Methoden gut abschätzen. Dies ist aber nicht der Fall für den Randverbund. Insbesondere ist gegenwärtig nicht bekannt, wie sich eine erhöhte Randlast auf die Dauerhaftigkeit, also die Lebensdauer eines Mehrscheiben-Isolierglases, auswirkt. Deshalb werden zurzeit Scheibenzwischenräume von 2 x 12 mm für den Standardaufbau von Dreischeiben-Wärmedämmglas empfohlen. Der Nachteil ist, dass der Wärmedurchgangskoeffizient um 40 % über dem des energetisch optimierten Aufbaus liegt.

Es war daher das Ziel dieses Forschungsvorhabens, den Einfluss der Randlast auf die Dauerhaftigkeit von Dreifach-Wärmedämmglas zu untersuchen. Dabei sollte die Randlast über die Größe des Scheibenzwischenraumes und die Scheibendicke gezielt verändert werden. Da bekannt war, dass die Dauerhaftigkeit eines MIG ganz wesentlich von der Fertigungsqualität bestimmt wird, die von Hersteller zu Hersteller erheblich variieren kann, musste eine ausreichende Anzahl von Probekörpern geprüft werden, um statistisch belastbare Aussagen treffen zu können, die auch für "die Industrie" als Ganzes gültig sind.

Probekörper dreier verschiedener Aufbauten, die unter Klimalast zum Auftreten unterschiedlicher Randlasten führen, wurden der Feuchtigkeitsaufnahmeprüfung gemäß EN 1279-2 unterzogen. Dabei war es wichtig, die durch die Klimabelastung verursachte absolute Feuchteaufnahme (in g) zu ermitteln, denn nur der absolute Wert (in g) sagt etwas über die Dichtheit des Randverbundes aus. Die Messung von Gasverlustraten gemäß EN 1279-3 war im Rahmen dieses Forschungsvorhabens wegen des wesentlich größeren zeitlichen und finanziellen Aufwandes nicht möglich.

		Rel. maximale Randlast *
Aufbau 1	4-12-4-12-4	100 %
Aufbau 2	4-18-4-18-4	120 %
Aufbau 3	6-18-4-18-6	160 %

Folgende drei Aufbauten im Format 350 mm x 500 mm wurden untersucht:

* Berechnet mit Üko Professional 3S Vers. 9.1

Klimabelastung in Anlehnung an EN 1279-2

Die Randlasten sind als relative Werte, bezogen auf Aufbau 1, angegeben.

Zwanzig Hersteller lieferten Probekörper für alle drei Aufbauten. Auf diese Weise sollte es möglich sein, einen Einfluss der Randlast auf die Feuchteaufnahme zu ermitteln und gleichzeitig einen Überblick über die Streuung von Ergebnissen innerhalb der Industrie zu erhalten. Im Rahmen des Forschungsvorhabens konnten nur starre Randverbundsysteme (Hohlprofilabstandhalter) mit schüttbaren Trockenmitteln berücksichtigt werden. Darüber hinaus konnten die teilnehmenden Betriebe selber über die Systemparameter wie Abstandhaltertyp, Trockenmittelmenge, Butylauftrag, Sekundärdichtstoff (PU oder PS), Rückenüberdeckung etc. entscheiden. Es wurden überwiegend Abstandhalter aus Kunststoff mit metallischer Diffusionssperre sowie PU als Dichtstoff verwendet.

Die Ergebnisse lassen sich wie folgt zusammenfassen:

- Höhere Randlasten führen zu höheren Feuchteaufnahmen.
- Ein linearer Zusammenhang zwischen Randlast und Feuchteaufnahme konnte im Rahmen der Untersuchungen nicht ermittelt werden. So zeigten die Scheiben mit dem Aufbau 2 im Vergleich zu denen mit dem Aufbau 1 deutlich höhere Feuchteaufnahmen. Der Anstieg der Feuchteaufnahme von Aufbau 2 zu Aufbau 3 war jedoch weniger deutlich, als aufgrund der berechneten Randlasten zu vermuten gewesen wäre.
- Der Einfluss der Herstellungsqualität auf die Feuchteaufnahme zeigte sich bei den Untersuchungen als mindestens genauso stark wie der Einfluss der Randlast, und er überlagerte die Ergebnisse deutlich.
- Aus dem vorangehenden Punkt folgt direkt: Einer erhöhten Prozesssicherheit bei der Herstellung von MIG mit erhöhten Randlasten (3-fach-MIG mit großem SZR, dicke Scheiben) kommt eine große Bedeutung zu.
- Der Feuchtigkeitsaufnahmefaktor I (Anteil der nach der normierten Alterung verbrauchten Feuchtigkeitsaufnahmekapazität eines MIG) ist kein hinreichendes Kriterium zur Beurteilung der Qualität eines Randverbundes, da er neben der eigentlichen Herstellungsqualität auch von der Trockenmittelmenge abhängig ist.

Ferner ist anzumerken:

• Die Ergebnisse der hier durchgeführten Untersuchungen zur Feuchteaufnahme sind nicht direkt auf Gasverlustraten übertragbar.

- Es ist unklar, ob oder inwieweit die hier gewonnenen Erkenntnisse übertragbar sind auf Mehrscheiben-Isoliergläser mit flexiblen Abstandhaltern mit integriertem Trockenmittel.
- Während lange, schmale Formate (mit einer kurzen Kante < 65 cm) das höchste Glasbruchrisiko unter Klimalast aufweisen, ergeben sich die höchsten Randlasten bei quadratischen Formaten (mit Kantenlängen von 40 – 60 cm).

Die Ergebnisse dieses Forschungsvorhabens sollten zusammen mit denen des Projektes "DuraSeal" (TU Darmstadt, 2015) betrachtet werden. Während es in diesem Projekt auch ganz wesentlich darum ging, einen Überblick über die in der Industrie von Hersteller zu Hersteller auftretenden Streuungen zu gewinnen, wurden im Projekt DuraSeal die Produktionseinflüsse minimiert, indem alle Probekörper in einem Werk hergestellt wurden. Stattdessen wurden neben SZR und Scheibendicke auch Faktoren wie Abstandhaltertyp, Butylauftrag, Dichtstoff, Rückenüberdeckung etc. gezielt variiert, in der Absicht funktionelle Zusammenhänge zwischen den Faktoren und der resultierenden Dauerhaftigkeit zu ermitteln. Wenn die gewonnenen Erkenntnisse vielleicht auch nicht unmittelbar auf andere Systeme übertragbar sind, so lassen sich wahrscheinlich doch einige Hinweise zur Verbesserung von Herstellungsprozessen ableiten.

Des Weiteren sollten mehr Dreifach-Wärmedämmgläser im Rahmen der externen Güteüberwachung (RAL) Dauerhaftigkeitsprüfungen gemäß EN 1279 unterzogen werden (anstatt des von der Norm vorgeschriebenen Zweifach-Glases), um langfristig eine breitere Datenbasis für Dreifach-Wärmedämmglas zu schaffen und damit zur Verbesserung der Prozesssicherheit beizutragen.

Zwei weitere Themenbereiche könnten für eine Fortführung der Arbeit erwogen werden:

- Der Einfluss der Randlast auf die Gasverlustrate (EN 1279-3) in Dreifach-Wärmedämmglas: Der Gasgehalt im Scheibenzwischenraum und die Gasverlustrate haben einen wesentlichen Einfluss auf die Wärmedämmung eines MIG und die Geschwindigkeit mit der sich die Wärmedämmung im Laufe der Nutzungsdauer vermindert. Untersuchungen gemäß EN 1279-3 sind allerdings sehr zeit- und kostenaufwändig.
- Der Einfluss der Randlast auf die Dauerhaftigkeit von Dreifach-Wärmedämmglas mit flexiblen Abstandhaltern und integriertem Trockenmittel: Diese Systeme nehmen einen zunehmenden Anteil des Marktes in Anspruch. Der Aufwand zur Bestimmung der Feuchtigkeitsaufnahme (über Karl-Fischer-Titration) ist wesentlich größer als bei Hohlprofilsystemen mit schüttbaren Trockenmitteln (etwa Faktor 8). Die Anzahl der Probekörper müsste wahrscheinlich reduziert werden im Vergleich zu diesem Projekt. Der Aufwand zur Bestimmung der Gasverlustrate wäre der Gleiche wie für Systeme mit schüttbaren Trockenmitteln.

Abstract

Transparent construction elements play a key role in improving the structural thermal protection of a building. A considerable reduction of the heat transfer coefficient can be achieved by the use of triple-pane insulating glass units. A double-pane unit with an interpane spacing of 16 mm, argon as fill gas and a low-e coating with an emissivity of 0.03 has a heat transfer coefficient of U_g = 1.1 W/(m²K). An optimized triple-pane unit, however, can achieve U_g = 0.5 W/(m²K), albeit with interpane spacings of 18 mm.

Conventional insulating glass units (IGUs) are hermetically sealed around the edges. Thus, whenever the external air pressure or the temperature in the cavity changes, the pressure in the cavity changes as well. This causes the panes to bulge inwards or out, inducing flexural stresses in them and loading the edge seal in tension or compression. These climatic loads increase with the size of the interpane gap and with the thickness of the glass panes. The effects of an increased climatic load on the glass are well known and can be estimated with established methods. This is different, however, for the edge seal. In particular, it is currently not known how an increased loading of the edge seal influences the durability of an IGU. Therefore, interpane spacings of 2 x12 mm are recommended for triple-pane IGUs at present. The drawback is a 40 % larger heat transfer coefficient than for an energetically optimized IGU.

It was the aim of this research project to study the effect of the edge load on the durability of triple-pane insulating glass units. The edge load was to be controlled by varying the size of the interpane spacing and the thickness of the glass panes. As it was known that the durability of an IGU depends very much on the quality of the manufacturing, which can vary considerably from manufacturer to manufacturer, a sufficiently high number of specimens had to be tested. Only then was it possible to gain statistically reliable results that would be valid for the IGU manufacturing industry as a whole.

IGU specimens of three different constructions were submitted to a moisture penetration test according to EN 1279-2. The chosen constructions differed in their interpane spacings and the thickness of the glass panes, so that different loads on the edge seal would be induced during the climate test. It was crucial to determine the absolute moisture uptake (in g) during the climate test because only the absolute value is a measure for the quality and tightness of the edge seal. The measurement of the gas leakage rate according to EN 1279-3 was not possible within the scope of this research project. The efforts in terms of time and cost would have been too great.

		Rel. maximum load on the edge seal *
Construction 1	4-12-4-12-4	100 %
Construction 2	4-18-4-18-4	120 %
Construction 3	6-18-4-18-6	160 %

The following three IGU constructions, of dimensions 350 mm x 500 mm, were tested:

* Calculated with software Üko Professional 3S Vers. 9.1
 Climatic loading based on EN 1279-2
 The load on the edge seal is given as relative value with respect to construction 1.

Twenty manufacturers supplied specimens of all three constructions. In this way, it should be possible to detect effects of the edge load on the moisture uptake as well as to gain an overview of the variation of results within the industry. Only rigid edge seal systems with pourable desiccants could be considered within the scope of this research project. Otherwise, it was left to the participating manufacturers to decide on the settings of system parameters like spacer type, amount of desiccant, sealant type (either PU or PS), edge seal geometry and dimensions. Polymeric spacers with a metallic diffusion barrier and PU as sealant were the preferred choices.

The results can be summarized as follows:

- A higher load on the edge seal causes a higher moisture uptake.
- A linear relationship between the edge load and the moisture uptake could not be detected. The specimens of construction 2 clearly show a higher moisture uptake than those of construction 1. However, the difference in moisture uptake between construction 3 and construction 2 is not as clear as could be expected from the calculated values for the edge load.
- The influence of the manufacturing quality on the moisture uptake is at least as strong as that of the edge load, and it confounds the results.
- From the preceding point follows: process control and product assurance become more important with increasing loading of the edge seal, i.e. for triple-pane IGUs with large interpane spacings and thick glass panes.
- The moisture penetration index I (expressed as a fraction or percentage of the water adsorption capacity of an IGU) is not a sufficient criterion to judge the quality of an edge seal because, beside the actual manufacturing quality, it depends on the amount of desiccant in the spacer.

Further, it has to be noted:

- The conclusions from this study of the moisture penetration are not directly transferrable to the gas leakage of IGUs.
- It is not clear whether the insights gained in this study on systems with rigid edge seals are applicable to flexible edge seal systems with integrated desiccants.

 IGUs that are long and narrow (with a short side < 65 cm) carry the highest risk of glass failure under climatic loads. The highest loading of the edge seal, however, occurs always in square-shaped IGUs (with a length of 40–60 cm).

The results and conclusions of this research project should be considered together with those from the project "DuraSeal" (TU Darmstadt, 2015). One of the key aims of this project was to gain an overview of the variation of results from manufacturer to manufacturer. In "DuraSeal", these variations were excluded because the same manufacturer built all the specimens. Instead, factors like spacer type, amount of butyl, type of secondary sealant, width of secondary seal etc. were varied deliberately, with the aim of establishing functional relationships between the factor settings and the resulting durability of the IGU. Perhaps the results from "DuraSeal" cannot be transferred directly to designs other than those used in the project, but some of the insights will probably be useful for the improvement of IGU manufacturing processes in general.

Furthermore, within the framework of the external quality monitoring (RAL), more triplepane IGUs should be submitted for durability testing according to EN 1279 (instead of the double-glazed units prescribed by the standard). In the long term, this would build a good source of data for triple-pane IGUs, which could help to improve process quality.

Two more subject areas can be considered for a continuation of this work:

- The influence of the edge load on the gas leakage rate (EN 1279-3) in triple-pane IGUs: The gas content in the interpane space and the gas leakage rate have a considerable effect on the thermal insulation of an IGU and the rate of its decline during normal service life. Gas leakage rate measurements, however, are very time-consuming and expensive.
- The influence of the edge load on the durability of triple-pane IGUs with flexible spacers and integrated desiccants: These systems have a growing proportion of the market. The effort to determine the degree of moisture penetration according to EN 1279-2 (by means of Karl-Fischer titration) is much larger than that for rigid spacer systems with pourable desiccants (by about a factor of 8). Therefore, the number of specimens would probably have to be reduced in comparison to this project. The effort to determine the gas leakage rate would be the same as for rigid systems with pourable desiccants.

1 Einleitung

1.1 Motivation / Ziele

Bei der Verbesserung des baulichen Wärmeschutzes kommt den transparenten Bauelementen eine wichtige Rolle zu. Eine deutliche Verringerung des Wärmedurchgangskoeffizienten von Fenstern und Fassaden kann durch die Verwendung von Dreischeiben-Wärmedämmglas erreicht werden. Hat ein Zweischeiben-Wärmedämmglas mit einem Scheibenzwischenraum (SZR) von 16 mm, Argonfüllung und einer Iow-e-Beschichtung mit einem Emissionsgrad von $\varepsilon = 0,03$ einen Wärmedurchgangskoeffizienten von U_g = 1,1 W/(m²K), so lässt sich mit einem optimierten Dreischeibenaufbau ein Wärmedurchgangskoeffizient von U_g = 0,5 W/m²K realisieren. Dazu sind allerdings Scheibenzwischenräume von 18 mm erforderlich.

Konstruktionsbedingt (hermetische Versiegelung) führen Änderungen des Luftdrucks und/oder der Temperatur im Isolierglas zu Druckunterschieden zwischen dem Scheibenzwischenraum und der Atmosphäre, und somit zu Klimalasten auf Glas und Randverbund. Die Höhe dieser Klimalasten steigt mit der Größe des SZR und der Scheibendicke an. Die Wirkung einer erhöhten Klimalast auf die Scheiben lässt sich basierend auf Berechnungen gemäß TRLV bzw. DIN 18008 und Erfahrungswerten gut abschätzen. Dies ist aber nicht der Fall für den Randverbund.

Zwar zeigen Modellrechnungen [1], dass die Belastung des Randverbundes bei einem 3fach-Wärmedämmglas mit 2 x 18 mm Scheibenzwischenraum um mehr als den Faktor 2 höher sein kann als bei einem 2-fach-Wärmedämmglas mit einem SZR von 16 mm; und dass die Verwendung von dicken Einzelscheiben, z.B. 6 oder 8 mm diesen Effekt nochmals verstärkt. (Dickere Scheiben werden zur statischen Dimensionierung von großformatigen MIG oder der Verbesserung von anderen Leistungseigenschaften, wie z.B. der Luftschalldämmung oder der Einbruchhemmung eingesetzt.) Aber es ist gegenwärtig nicht bekannt, wie sich eine erhöhte Randlast auf die Dauerhaftigkeit, also die Lebensdauer, eines Mehrscheiben-Isolierglases auswirkt. Die bisher angegebene Lebensdauer eines Mehrscheiben-Isolierglases von 20–25 Jahren basiert im Wesentlichen auf den langjährigen praktischen Erfahrungen und Untersuchungen an 2-Scheiben-Glas mit 12 und 16 mm SZR.

Um negative Effekte auf die Lebensdauer von 3-Scheiben-Wärmedämmglas von vornherein zu vermeiden oder zumindest gering zu halten, werden zurzeit Scheibenzwischenräume von 2 x 12 mm bis 2 x 14 mm für den Standardaufbau von 3-Scheiben-Wärmedämmglas empfohlen. Dadurch liegen die Belastungen des Randverbundes zwar über denen eines Zweifachglases mit 16 mm Scheibenzwischenraum, aber auch deutlich unter denen eines energetisch optimierten Aufbaus mit 2 x 18 mm SZR. Der Nachteil ist, dass der Wärmedurchgangskoeffizient um 40 % über dem des energetisch optimierten Aufbaus liegt (U_g = 0,7 W/(m²K) für 2 x 12 mm SZR gegenüber U_g = 0,5 W/(m²K) für den optimierten Aufbau mit 2 x 18 mm). ift

Der für den Standardaufbau mit 2 x12 mm Scheibenzwischenraum ermittelte Wärmedurchgangskoeffizient von $U_g = 0,7$ W/(m²K) bildete in der Vergangenheit die Grundlage für die Bewertung der wärmetechnischen Leistungsfähigkeit von Fenstern und Fassaden; im Speziellen zur Beurteilung eines umsetzbaren Anforderungsniveaus im Rahmen der Energieeinsparverordnung. Da in Zukunft mit weiteren Verschärfungen der Anforderungen an den baulichen Wärmeschutz zu rechnen ist, stellt sich die Frage, ob energetisch optimierte Isolierglasaufbauten mit einem Scheibenzwischenraum von 2 x 18 mm angenommen werden können. Im Sinne der Nachhaltigkeit und der Bauqualität müsste sichergestellt werden, dass bei solchen Aufbauten die Lebensdauer nicht negativ beeinflusst wird.

Es war daher das Ziel dieses Forschungsvorhabens, den Einfluss der Randlast auf die Dauerhaftigkeit von Dreifach-Wärmedämmglas zu untersuchen. Dabei sollte die Randlast über die Größe des Scheibenzwischenraumes und die Scheibendicke gezielt verändert werden. Da bekannt war, dass die Dauerhaftigkeit eines MIG ganz wesentlich von der Fertigungsqualität bestimmt wird, die von Hersteller zu Hersteller erheblich variieren kann, musste eine ausreichende Anzahl von Probekörpern geprüft werden, um statistisch belastbare Aussagen treffen zu können, die auch für "die Industrie" als Ganzes gültig sind.

Sollten die Untersuchungen zeigen, dass ein gegenüber den allgemeinen Empfehlungen erhöhter SZR zu keiner signifikanten Beeinträchtigung der Dauerhaftigkeit führt, so gäbe es Spielraum für eine zukünftige weitere Reduzierung der Transmissionswärmeverluste durch Fenster und Fassaden.

1.2 Ausgangslage

Zur Abstimmung dieses Forschungsantrags wurden mit Fachleuten aus der Isolierglasbranche, dem ift Rosenheim sowie Verbands- und Branchenvertretern Gespräche zur Thematik geführt. Dabei wurde der Bedarf einer Aufarbeitung dieses Themas erkannt.

Bei einer Recherche in den Bauforschungsdatenbanken des IRB konnten keine öffentlichen Forschungsvorhaben gefunden werden, die sich mit der Thematik bereits befasst hatten.

Für die Bewertung der Dauerhaftigkeit von Mehrscheiben-Isolierglas existieren anerkannte Verfahren, die u.a. durch europäische Normen beschrieben sind. Diese Verfahren, wie z.B. EN 1279 [2], sollten als Grundlage für die Untersuchungen dienen und u.U. an die spezifischen Bedürfnisse des Vorhabens angepasst werden. So waren Randbedingungen wie z.B. der Aufbau und die Abmessungen der zu untersuchenden Probekörper sowie die Art und Dauer der Belastung festzulegen. Dabei sollten die theoretischen Berechnungen aus einer Studie zur Beanspruchung des Isolierglasrandverbundes [1] genutzt werden. Darüber hinaus sollten ausschließlich experimentelle Untersuchungen durchgeführt werden.

1.3 Projektgruppe

Das Forschungsvorhaben wurde mit Unterstützung des Bundesverbandes Flachglas e.V. durchgeführt. Die im Rahmen des Projektes untersuchten Probekörper wurden von Mitgliedern des Bundesverbandes Flachglas zur Verfügung gestellt.

Der projektbegleitende Ausschuss wurde durch folgende Personen gebildet:

- Prof. Dr. Franz Feldmeier, Hochschule Rosenheim
- Dr.-Ing. Peter Hof, MPA-IfW, Darmstadt
- Dr. Rüdiger Reichardt, Fenzi Belgium nv/sa, Vilvoorde, Belgien

Im Laufe des Projektes fanden folgende Besprechungen statt:

- 1. Projekttreffen (Auftaktsitzung), 17 Dezember 2013 in Rosenheim
- Webmeeting, 26. September 2014
- 2. Projekttreffen (Abschlusssitzung), 5. August 2015 in Rosenheim

2 Untersuchungsprogramm

2.1 Einfluss von Scheibenabstand und Scheibendicke auf die Randlast

In einer Studie aus dem Jahr 2011 [1] wurde der Einfluss des Scheibenabstandes und der Glasdicke auf die Randlasten berechnet. Die Studie basiert im Wesentlichen auf der in [3] dargestellten Theorie zur Klimabelastung und Lastverteilung in Isolierglas. Die Studie [1] zeigt, dass neben dem Scheibenabstand auch die Scheibendicke einen wesentlichen Einfluss auf die Randlast hat. So hat bei kleinen Formaten eine Erhöhung der Scheibendicke von 4 mm auf 6 mm einen größeren Effekt auf die Randlast als eine Vergrößerung des SZR von 12 mm auf 18 mm. Zur Illustration der Effekte von Scheibenabstand und Scheibendicke auf die maximale Randlast sind in Abbildung 1 zwei Graphen aus der oben genannten Studie [1] wiedergegeben.

ift

Maximale Randlast, Seitenverhältnis 1:1 (Quadrat)

Maximale Randlast, Seitenverhältnis 1:3 ("Handtuch")

Abbildung 1 Maximale Randlast für unterschiedliche Scheibenaufbauten in Abhängigkeit der Kantenlänge für zwei Seitenverhältnisse. Quelle: [1]

Der Effekt dicker Scheiben ist wichtig für die Anwendung, denn die in der Praxis eingesetzte Bemessungssoftware schlägt bei einem Überschreiten der zulässigen Scheibenspannung üblicherweise dickere Scheiben anstatt ESG vor (wegen des Preisvorteils von dickeren Float-Scheiben gegenüber ESG).

Um konkrete Anhaltspunkte für die Planung von experimentellen Untersuchungen zu haben, wurden in Anlehnung an die oben genannte Studie Scheibenspannungen und maximale Randlasten mit Hilfe der Bemessungssoftware Üko für verschiedene Aufbauten berechnet. Dabei wurde nur das Format 350 mm x 500 mm berücksichtigt. Erstens, weil kleine Formate bei gegebener Klimalast grundsätzlich höhere Randlasten aufweisen [1], und zweitens, weil 350 mm x 500 mm das von der Produktnorm EN 1279 [2] für Dauerhaftigkeitsprüfungen vorgeschriebene Format ist. Die Ergebnisse der Berechnungen sind in Tabelle 1 dargestellt.

	,						
Format 350 mm x 500 mm							
Aufbau		4-12-4-12-4	4-18-4-18-4	6-12-4-12-6	6-18-4-18-6		
Scheibenspannung	N/mm²	25	30	17	19		
Scheibenspannungsnachweis (bezogen auf Float)		11 % zu groß	32 % zu groß	Ok	Ok		
Max. Randlast in	N/cm	14	16	21	22		
Rel. max. Randlast in ^c bezogen auf Aufbau 4-12-	%, 4-12-4	100	120	150	160		

Tabelle 1	Scheibenspannungen und Randlasten für verschiedene 3-fach-Aufbauten von
	Isolierglas (in Anlehnung an EN 1279-2: Angenommene Herstelltemperatur 15 °C
	Belastung +43K, -33K)

Berechnet mit Üko Professional 3S Vers. 9.1

Der Anstieg in der Randlast beim Übergang von 12 mm auf 18 mm SZR ist relativ klein, sowohl für 4 mm als auch für 6 mm Dicke der äußeren Scheiben. Die Erhöhung der Scheibendicke von 4 mm auf 6 mm bei gleichem SZR dagegen hat einen wesentlich größeren Effekt auf die Randlast. Außerdem ist erkennbar, dass die Scheibenspannung durch eine höhere Glasdicke erheblich reduziert wird.

Neben der (absoluten) Randlast ist in der Tabelle 1 auch die relative Randlast (bezogen auf den Wert der Randlast für den Aufbau 4-12-4-12-4) wiedergegeben. Auf die relativen Werte wird in der Diskussion der Untersuchungsergebnisse in Kapitel 1 Bezug genommen.

Auf Grundlage dieser Daten wurde von der Projektgruppe beschlossen, neben dem Scheibenabstand, wie ursprünglich im Antrag für dieses Forschungsvorhaben vorgesehen, auch die Scheibendicke in die Untersuchungen einzubeziehen. Letztendlich ging es darum, den Einfluss der Randlast auf die Dauerhaftigkeit von Mehrscheiben-Isolierglas zu ermitteln. Und die Randlast wird ganz erheblich von der Dicke der äußeren Scheiben eines MIG beeinflusst.

2.2 Prüfung der Dauerhaftigkeit

Die Produktnorm EN 1279 [2] definiert zwei Methoden zur Beurteilung der Dauerhaftigkeit von Mehrscheiben-Isolierglas: die Bestimmung der Feuchteaufnahme während einer definiernierten Klimabelastung in Teil 2 und die Ermittlung der Gasverlustrate nach einer definierten Klimabelastung in Teil 3 der Norm. Nach den Erfahrungen der Forschungsstelle reagiert die Gasverlustrate empfindlicher auf Fehler im Randverbund. Jedoch ist diese Methode zeitlich, messtechnisch und daher auch finanziell wesentlich aufwändiger als die Bestimmung der Feuchteaufnahme. Daher wurde die Bestimmung der Feuchteaufnahme gemäß EN 1279-2 als primäre Untersuchungsmethode ausgewählt.

2.3 Untersuchungskonzept

Probekörper verschiedener Aufbauten, die unter Klimalast zum Auftreten unterschiedlicher Randlasten führen, sollten der Feuchteaufnahmeprüfung gemäß EN 1279-2 [2] unterzogen werden. Dabei war es wichtig, die durch die Klimabelastung verursachte absolute Feuchteaufnahme (in g) zu ermitteln, denn nur der absolute Wert (in g) sagt etwas über die Dichtheit des Randverbundes aus. Die relative Änderung der Beladung des Trockenmittels (in %) hängt auch von der Menge an eingefülltem Trockenmittel ab.

Nach den Erfahrungen der Forschungsstelle ist die Dauerhaftigkeit eines MIG ganz wesentlich von der Fertigungsqualität bestimmt, die von Hersteller zu Hersteller erheblich variieren kann. Um statistisch belastbare Aussagen treffen zu können, die auch für "die Industrie" als Ganzes gültig sind, war es daher wichtig, eine ausreichende Anzahl von Probekörpern von verschiedenen Herstellern zu prüfen.

Die Projektgruppe beschloss, drei Aufbauten zu untersuchen, und die Probekörper dafür von 20 Herstellern (Mitgliedern des BF) produzieren zu lassen. Jeder Hersteller sollte dabei Probekörper für alle drei Aufbauten liefern. Auf diese Weise sollte es möglich sein, einen Einfluss der Randlast auf die Feuchteaufnahme zu ermitteln und gleichzeitig einen Überblick über die Streuung von Ergebnissen innerhalb der Industrie zu erhalten.

Anmerkung:

Parallel zu diesem Forschungsvorhaben wurde an der Technischen Universität Darmstadt das Projekt "DuraSeal" [4] durchgeführt. Es beschäftigt sich im Prinzip mit der gleichen Thematik, allerdings auf einem anderen Weg. Im Rahmen dieses Projektes wurden MIG-Probekörper mit Sensoren für Druck, Temperatur und Verformung ausgestattet. Dabei wurden die Probekörper nur von einem Hersteller produziert und gezielt Parameter wie SZR, Scheibendicke, Abstandhalter, Dichtstoff etc. verändert. Diese Probekörper wurden einer Klimalagerung ausgesetzt; mit dem Ziel, aus den gesammelten Daten ein Ingenieurmodell zur Schätzung/Vorhersage der Lebensdauer von MIG abzuleiten.

3 Experimentelle Untersuchungen

3.1 Probekörper

Zur Durchführung der experimentellen Untersuchungen wurden drei Aufbauten aus Tabelle 1 ausgewählt, nämlich:

		Rel. maximale Randlast *
Aufbau 1	4-12-4-12-4 (Dicke 36 mm)	100 %
Aufbau 2	4-18-4-18-4 (Dicke 48 mm)	120 %
Aufbau 3	6-18-4-18-6 (Dicke 52 mm)	160 %
* Berechnet i Klimabelas	nit Üko Professional 3S Vers. 9.1 tung in Anlehnung an FN 1279-2	

Die Randlasten sind als relative Werte, bezogen auf Aufbau 1, angegeben.

Jeweils 10 Probekörper eines Aufbaus waren für die Prüfung der Feuchteaufnahme notwendig: vier zur Bestimmung der Anfangsbeladung, fünf für die Alterung und anschließende Ermittlung der Endbeladung und ein Probekörper als Rückstellmuster.

Die konstruktiven Details der Probekörper wurden wie folgt festgelegt:

- Format: 350 mm x 500 mm
- Floatglas mit nass gesäumten Kanten
- Abstandhalter: Wärmetechnisch verbesserter Abstandhalter (Hohlprofil), (kein Aluminium bzw. verzinkter Stahl)
- Schüttbares Trockenmittel
- Low-e-Beschichtung auf Pos. 2 und 5
- Ar-Füllung
- Primärdichtstoff: Butyl
- Sekundärdichtstoff: Polyurethan oder Polysulfid, nach Wahl d. Herstellers

Die Probekörper sollten so weit wie möglich nach der bei den einzelnen Herstellern üblichen Praxis produziert werden. Der Einfachheit und Kosten halber wurden alle Probekörper in Floatglas gefertigt, obwohl in Aufbau 1 und 2 die zulässige Biegezugspannung in den Scheiben überschritten wurde (s. Tabelle 1). Da die Überschreitungen nicht sehr groß waren, war auch das Glasbruchrisiko nur gering. Durch nasses Säumen der Kanten sollte das Glasbruchrisiko weiter reduziert werden. Da sich wärmetechnisch verbesserte Abstandhalter als Standard durchsetzen, sollten sie auch hier verwendet werden. Dabei musste eine Beschränkung auf Hohlprofile mit schüttbaren Trockenmitteln erfolgen. Flexible Abstandhalter mit integriertem Trockenmittel erfordern das Karl-Fischer-Titrationsverfahren, um die Feuchtebeladung zu bestimmen. Dieses Verfahren ist zu zeitaufwendig (etwa Faktor 8 im Vergleich zu schüttbaren Trockenmitteln), um es im Rahmen dieses Forschungsvorhabens einzusetzen. Die Hersteller der Probekörper verwendeten überwiegend Abstandhalter aus Kunststoff mit metallischer Diffusionssperre, sowie PU als Dichtstoff. Tabelle 2 gibt einen Überblick über die Häufigkeiten der eingesetzten Abstandhalter- und Sekundärdichtstofftypen.

Abstandbalter	Anzahl
	Alleann
Edelstahl	4
Kunststoff mit metallischer Diffusionssperre	16
Sekundärdichtstoff	Anzahl
Sekundärdichtstoff Polyurethan (PU)	Anzahl 12

 Tabelle 2
 Abstandhalter und Sekundärdichtstoff in Probekörpern

3.2 Durchführung

Da es nicht möglich war, die Probekörper von 20 Herstellern gleichzeitig der Klimabelastung auszusetzen, wurden die 20 Hersteller in zwei Gruppen zu je zehn Herstellern eingeteilt. Deren Probekörper konnten gleichzeitig der Klimabelastung unterzogen werden. Abbildung 2 zeigt die Probekörper einer Herstellergruppe in der Klimakammer.

Abbildung 2 MIG-Probekörper auf Regal in Klimakammer

Die Klimalagerung erfolgte gemäß den Vorgaben der Norm EN 1279-2, begann also mit vier Wochen Wechselklima (von –18 °C bei niedriger relativer Feuchte bis +53 °C bei mindestens 95 % RH) gefolgt von sieben Wochen Konstantklima (+58 °C, mindestens 95 % RH).

Die relative Anfangsbeladung (in %) des Trockenmittels wurde gemäß EN 1279-2 an vier der angelieferten zehn Probekörper bestimmt. Dabei wurden die beiden Scheibenzwischenräume einzeln erfasst. Es wurde angenommen, dass die fünf Probekörper für die Klimalagerung die gleiche (relative) Anfangsbeladung hatten, da alle Probekörper aus derselben Fertigungscharge stammten.

Nach der Klimabelastung wurde die absolute Feuchtebeladung des Trockenmittels der fünf gealterten Probekörper bestimmt. Dabei wurden wiederum die beiden Scheibenzwischenräume einzeln erfasst. Es wurde besonders darauf geachtet, möglichst die gesamte Trockenmittelmenge aus einem Abstandhalter zu entnehmen. (Bei der Ermittlung der relativen Anfangsbeladungen war es unkritisch, wenn aus Versehen ein wenig Trockenmittel im Abstandhalter verblieb, da es keinen Einfluss auf den relativen Wert haben würde.)

Die experimentell ermittelte absolute Feuchtebeladung eines Scheibenzwischenraumes nach der Alterung ist die Summe aus der Anfangsbeladung und der während der Klimalagerung aufgenommenen Feuchte, der sogenannten "Zubeladung". Das bedeutet: die Zubeladung für jeden Scheibenzwischenraum ergibt sich durch Subtraktion der Anfangsbeladung von der jeweiligen Feuchtebeladung nach der Alterung.

3.3 Auswertung der Messungen und Einzelergebnisse

Abbildung 3 zeigt exemplarisch die ermittelten Einzelergebnisse eines Herstellers, wie sie für alle Hersteller im Anhang zu finden sind.

Hersteller	5	Abstandhalter:			Kunststoff / metallische Diffusionssperre					
		Sekundärdichtstoff:		PS						
			Тс	in %	22					
	Lieferzustan	d			Gealtert				"Z"	
				"Tì"	"m fe"	"m tr"			Zubeladung	Feucht.
	TM	TM		Anfangs-	TM	TM	"B"	"Tf"	durch	aufn.faktor
	entnommen	getrocknet	Beladung	beladung	entnommen	getrocknet	Beladung	Beladung	Alterung	I
	in g	in g	in g	in %	in g	in g	in g	in %	in g	in %
36 mm	27,362	26,932	0,430	1,6	30,061	28,883	1,178	4,08	0,73	12,3
4-12-4-12-4	27,116	26,707	0,409	1,5	29,617	28,331	1,286	4,5	0,84	14,5
	28,260	27,832	0,428	1,5	30,008	28,748	1,260	4,4	0,81	13,8
	27,850	27,429	0,421	1,5	29,083	27,839	1,244	4,5	0,81	14,2
	28,754	28,283	0,471	1,7	29,413	28,035	1,378	4,9	0,94	16,4
	26,126	25,731	0,395	1,5	27,827	26,689	1,138	4,3	0,72	13,2
	28,237	27,802	0,435	1,6	28,619	27,409	1,210	4,4	0,78	13,9
	28,171	27,733	0,438	1,6	29,550	28,578	0,972	3,4	0,52	9,0
					29,925	28,605	1,320	4,6	0,87	14,9
				_	29,748	28,631	1,117	3,90	0,67	11,4
Mittel	27,7	27,3	0,4	1,6	29,4	28,2	1,2	4,3	0,77	13,4
Stabw	0,8	0,8	0,0	0,0	0,7	0,7	0,1	0,4	0,12	2,1
Median	28,0	27,6	0,4	1,6	29,6	28,5	1,2	4,4	0,79	13,9
					Ti,av					
48 mm	39,910	39,307	0,603	1,5	46,074	43,060	3,014	7,0	2,36	26,8
4-18-4-18-4	41,324	40,721	0,603	1,5	44,527	42,670	1,857	4,4	1,21	13,8
	41,533	40,909	0,624	1,5	44,377	41,867	2,510	6,0	1,87	21,9
	40,749	40,158	0,591	1,5	45,531	43,980	1,551	3,5	0,88	9,8
	39,550	38,936	0,614	1,6	45,754	42,902	2,852	6,6	2,20	25,0
	40,853	40,248	0,605	1,5	43,955	42,153	1,802	4,3	1,16	13,5
	42,522	41,873	0,649	1,5	44,937	42,922	2,015	4,7	1,36	15,5
	40,854	40,242	0,612	1,5	42,993	41,309	1,684	4,1	1,06	12,5
Mittel	40,9	40,3	0,6	1,5	44,8	42,6	2,2	5,1	1,51	17,3
Stabw	0,9	0,9	0,0	0,0	1,0	0,8	0,6	1,3	0,56	6,3
Median	40,9	40,2	0,6	1,5	44,7	42,8	1,9	4,5	1,29	14,7
52 mm	43 479	42 822	0.657	15	44 653	41 600	3 053	73	2 43	28.5
6-18-4-18-6	43 793	43 150	0,643	1,5	43 922	41 041	2 881	7.0	2,43	26.9
0 10 4 10 0	43.028	42 397	0,631	1,0	45 614	42 903	2,001	63	2.07	23.5
	41,500	40.883	0,617	1,5	44 323	41 635	2,688	6.5	2.07	24.2
	44 242	43 593	0.649	1.5	44 776	42 239	2,537	6.0	1 91	22.0
	42 973	42 347	0.626	1.5	44 915	42 629	2,337	5.4	1.65	18.9
	42 165	41 544	0.621	1.5	44 269	42 151	2 118	5.0	1 49	17.2
	41 928	41 314	0.614	1,5	44 592	41 699	2,110	6.9	2 27	26.5
	-1,020	-1,01-	5,517	1,0	42 837	40.059	2,333	6.9	2.18	26.5
					43,384	41,704	1,680	4.0	1.06	12.3
Mittel	42 0	42.3	0.6	15	44 3	41.8	2.6	61	1 94	22.7
Stabw	1.0	0.9	0.0	0.0	0.8	0.8	0.4	1.1	0.42	5.1
Median	43.0	42.4	0.6	1.5	44.5	41.7	2.7	6.4	2,07	23.9
		,				,	,	- /	, · ·	- / -

Abbildung 3

Exemplarische Darstellung der Einzelergebnisse von Hersteller 5. (Die Einzelergebnisse aller Hersteller sind im Anhang aufgeführt.)

Neben der nach dem Zufallsprinzip an die Hersteller vergebenen Hersteller Nr., oben links, finden sich Angaben zum Abstandhalter und Sekundärdichtstoff sowie die Norm-Feuchtigkeitsaufnahmekapazität des Trockenmittels T_c. Diese Angaben gelten für alle drei Aufbauten eines Herstellers.

Darunter sind die ermittelten Daten für die untersuchten Aufbauten in drei Tabellen aufgeführt, nämlich für:

		Rel. maximale Randlast
Aufbau 1	4-12-4-12-4 (Dicke 36 mm)	100 %
Aufbau 2	4-18-4-18-4 (Dicke 48 mm)	120 %
Aufbau 3	6-18-4-18-6 (Dicke 52 mm)	160 %
* Berechnet mit Klimabelastur Die Randlaste	t Üko Professional 3S Vers. 9.1 ng in Anlehnung an EN 1279-2 en sind als relative Werte, bezogen a	uf Aufbau 1, angegeben.

In den Tabellen befinden sich links Werte für die Probekörper im Lieferzustand, daneben solche für die gealterten Probekörper einschließlich der Zubeladungen sowie Feuchtigkeitsaufnahmefaktoren. Dabei sind die Werte für jeden Scheibenzwischenraum einzeln aufgeführt. Die Werte für die beiden Scheibenzwischenräume eines Probekörpers sind durch eine Umrahmung zusammengefasst; vier Probekörper für den Lieferzustand und fünf gealterte Probekörper. Sind die Felder für einen Scheibenzwischenraum leer, so war dieser beschädigt, und es konnten keine sinnvollen Werte ermittelt werden.

Arithmetische Mittelwerte, Standardabweichungen und Medianwerte sind unter den Einzelwerten in den Tabellen zu finden.

Die Probekörper im Lieferzustand dienten nur einem einzigen Zweck: nämlich einen Schätzwert $T_{i,av}$ für die Anfangsbeladung des Trockenmittels zu ermitteln. Dies erfolgte durch Mittelwertbildung der Anfangsbeladungen aller acht Scheibenzwischenräume.

Die einzelnen Zubeladungen Z für die gealterten Probekörper bzw. Scheibenzwischenräume, d.h. die Feuchtemengen, die während der Alterung aufgenommen worden waren, konnten wie folgt berechnet werden:

$$Z = B - m_{tr} \cdot T_{i,av}$$
 wobei $B = m_{fe} - m_{tr}$

Die Feuchtigkeitsaufnahmefaktoren I wurden konventionell gemäß EN 1279-2 berechnet. Der Faktor I gibt den Anteil der nach der normierten Alterung verbrauchten Feuchtigkeitsaufnahmekapazität eines MIG an.

$$I = \frac{T_f - T_{i,av}}{T_C - T_{i,av}}$$

3.4 Messunsicherheiten / -fehler

Um die Zubeladung der gealterten Probekörper / Scheibenzwischenräume zu ermitteln, mussten die im Folgenden beschriebenen Arbeitsschritte im Labor der Forschungsstelle durchgeführt werden. Diese Arbeitsschritte sind immer mit Unsicherheiten verbunden, die sich auf das Resultat, also den Wert der Zubeladung, auswirken.

Entnahme des Trockenmittels:

Das Trockenmittel wurde mit großer Sorgfalt entnommen. Jeder Abstandhalter wurde an einander gegenüberliegenden Ecken aufgebohrt, und durch Klopfen wurde das Herausrinnen der Trockenmittelkügelchen begünstigt. Basierend auf früheren Erfahrungen des Labors und nachträglichen Inspektionen einiger Abstandhalter wird geschätzt, dass gelegentlich, bedingt durch die gebogenen Ecken und die eingesteckten Längsverbinder, maximal 1 bis 2 ml Trockenmittel in einem Abstandhalter hätte verbleiben können. Bei einer Schüttdichte vom Molekularsieb von etwa 700 g/l entspricht das etwa 0,7 bis 1,4 g. Der Einfachheit halber soll im Folgenden mit 1 g weitergerechnet werden.

Die von den Herstelllern eingefüllten Trockenmittelmengen lagen zwischen etwa 20 und 100 g (s. Tabellen mit Einzelergebnissen im Anhang oder Tabelle 3). Das bedeutet: der durch unvollständige Entnahme des Trockenmittels verursachte Fehler könnte etwa 5 % bei den mit wenig Trockenmittel gefüllten Abstandhaltern betragen und ungefähr 1 % bei den mit viel Trockenmittel gefüllten Abstandhaltern. Wahrscheinlich ist der Fehler aber in den meisten Fällen wesentlich geringer.

Einfüllen in einen Tiegel:

Das entnommene Trockenmittel wurde in einen Tiegel eingefüllt, darin gewogen, getrocknet (geglüht) und wieder gewogen. Die bis zur ersten Wägung von dem noch aktiven Trockenmittel aus der Atmosphäre aufgenommene Feuchtigkeit wird nach einigen Beobachtungen auf maximal 10 mg geschätzt.

Wägen:

Das Wiegen erfolgte mit einer Analysenwaage. Die Reproduzierbarkeit der Messungen liegt im Bereich von 1–2 mg.

Die soeben aufgeführten Unsicherheiten bzw. Fehler muss man größenordnungsmäßig vergleichen mit den Einzelwerten der Tabellen im Anhang bzw. mit den Übersichtsdarstellungen im nachfolgenden Kapitel 4. Es wird offensichtlich, dass die durch das Wägen und während des Einfüllens in den Tiegel verursachten Fehler vernachlässigbar klein sind. Die durch eine unvollständige Entnahme des Trockenmittels verursachten Fehler sind relativ klein im Verhältnis zu den Streuungen, die sich aus der Herstellung der Probekörper ergeben haben.

4 Ergebnisse

4.1 Trockenmittelbefüllung

Tabelle 3 führt für alle Hersteller und Aufbauten die mittlere Trockenmittelbefüllung auf. Dabei wurden die Mittelwerte jeweils aus allen 18 Scheibenzwischenräumen (SZR) berechnet – nämlich den acht SZR (4 Probekörper), die zur Ermittlung der Anfangsbeladung geöffnet wurden sowie den zehn SZR (5 Probekörper), die nach der Alterung geöffnet wurden. Des Weiteren sind in der Tabelle die Standardabweichung dieser 18 Werte und die Spannweite (also die Differenz zwischen dem größten und dem kleinsten Wert) angegeben.

, P		4-12-4-12-4	ł		4-18-4-18-4	÷		6-18-4-18-6	j.
Hersteller	Mittel	Stabw	Spannweite	Mittel	Stabw	Spannweite	Mittel	Stabw	Spannweite
	in g	in g	in g	in g	in g	in g	in g	in g	in g
1	57	8	31	91	9	36	95	4	14
2	25	7	19	48	4	17	45	8	29
3	20	1	5	62	12	43	66	9	41
4	20	2	7	36	2	10	34	4	14
5	28	1	3	41	2	5	42	1	4
6	34	7	22	67	8	25	60	15	47
7	22	4	13	38	6	18	39	7	22
8	17	3	8	26	8	32	28	4	17
9	22	6	22	37	4	16	37	4	13
10	21	0	2	37	6	23	36	1	2
11	35	1	3	54	1	5	54	0	2
12	30	11	33	56	10	32	53	14	43
13	20	5	17	38	7	27	39	4	14
14	20	5	14	34	10	31	32	7	20
15	18	3	11	34	10	23	38	9	23
16	34	1	5	54	1	2	54	1	3
17	28	2	11	45	0	2	45	1	3
18	48	4	10	79	9	28	79	7	20
19	29	9	34	55	10	27	56	14	48
20	28	1	2	41	8	43	41	0	1

 Tabelle 3
 Trockenmittelbefüllung der Probekörper, getrockneter Zustand

Die absoluten Mengen an Trockenmittel sind an sich für den Zweck dieses Forschungsvorhabens unwesentlich. Aber die Mengen und noch mehr deren Streuungen (ausgedrückt durch Standardabweichung und Spannweite) sind ein Hinweis auf das Maß der Prozesskontrolle bei den einzelnen Herstellern. Als Beispiele sind die Zeilen für die Hersteller 5 und 12 grau unterlegt. Bei Hersteller 5 sind die Standardabweichungen und die Spannweiten sehr gering, bei Hersteller 12 dagegen sehr groß.

Die Befüllung der Abstandhalter mit Trockenmittel ist nur ein Prozessschritt von vielen bei der Herstellung von Mehrscheiben-Isoliergläsern. Daher kann und darf aus dem im vorherigen Absatz Gesagtem nicht geschlossen werden, dass die Scheiben von Hersteller 12 schlechter sind als die von Hersteller 5. Allerdings sollte bedacht werden, dass bei sehr geringer Befüllung mit Trockenmittel, egal ob beabsichtigt oder zufällig durch unzureichende Prozesskontrolle, die Dauerhaftigkeit eines MIG u.U. erniedrigt wird. Die Ausfallwahrscheinlichkeiten in der Dauerprüfung gemäß EN 1279-2 sowie in der realen Nutzung erhöhen sich.

4.2 Anfangsbeladung

Abbildung 4 zeigt die mittleren Anfangsbeladungen mit den zugehörigen 95%-Vertrauensbereichen für alle Hersteller und Aufbauten. Im Rahmen dieses Forschungsvorhabens war die Anfangsbeladung eine wichtige Zwischengröße bei der Berechnung der durch die Alterung hervorgerufenen Zubeladung. Dabei war insbesondere die Streuung der Werte bedeutsam. Eine große Streuung der Anfangsbeladung verursacht eine relativ große Unsicherheit bei der Bestimmung der Zubeladung. Für den Hersteller könnte eine hohe Streuung ein Anzeichen für eine unzureichende Prozesskontrolle sein.

Abbildung 4 Mittlere Anfangsbeladung mit Vertrauensbereich von 95 %

Bei der Mehrzahl der Hersteller liegen die Anfangsbeladungen unter dem in der EN 1279-6 (WPK) festgelegten Grenzwert von 3 % und die Streuungen sind gering. Bei etwa einem Viertel der Hersteller allerdings liegen Anfangsbeladungen über dem Grenzwert bzw. sehr nahe an dem Grenzwert, und es treten zum Teil auch hohe Streuungen auf.

Auffällig in der Abbildung 4 ist der Aufbau 4/12/4/12/4 des Herstellers 17 mit einer sehr hohen Anfangsbeladung und einer sehr hohen Streuung. Betrachtet man die Einzelwerte im Anhang, so findet man zwei Probekörper mit Anfangsbeladungen zwischen 2,2 und 2,5 % und zwei Probekörper mit Anfangsbeladungen zwischen 11,2 und 12,7 %. Die Probekörper waren unauffällig, es konnten keine offensichtlichen Beschädigungen des Rand-

verbundes festgestellt werden. Es war aber davon auszugehen, dass auch die gealterten Probekörper sehr unterschiedliche Anfangsbeladungen haben konnten. Die Verwendung einer mittleren Anfangsbeladung von etwa 7 % (wie in Abbildung 4 zu sehen) zur Berechnung der Zubeladung war hier nicht mehr sinnvoll. Stattdessen wurde mit zwei verschiedenen mittleren Anfangsbeladungen (2,4 und 11,7) gerechnet. Die gealterten Probekörper bzw. SZR ließen sich relativ einfach und eindeutig den beiden Werten für die (wahrscheinliche) Anfangsbeladung zuordnen. Dieses war der einzige Fall, in dem eine "Korrektur" der Messwerte vorgenommen wurde. Bei den anderen Systemen wurde mit den Mittelwerten der Anfangsbeladungen gerechnet.

4.3 Feuchtigkeitsaufnahmefaktor I

Abbildung 5 präsentiert die mittleren Feuchtigkeitsaufnahmefaktoren I und deren 95%-Vertrauensbereiche für alle Hersteller und Aufbauten.

Abbildung 5 Mittlerer Feuchtigkeitsaufnahmefaktor I mit Vertrauensbereich von 95 %

Zunächst fällt der Hersteller 13 mit sehr hohen Werten auf. Bei zwei der drei Aufbauten ist das Trockenmittel gesättigt ($I \ge 100$ %). Eine visuelle Inspektion der Probekörper zeigte, dass sich der Randverbund bei allen Probekörpern während der Alterung geöffnet hatte. Dies zeigte sich auch durch Einschnürungen des Randverbundes an den äußeren Scheiben (Abbildung 6). Feuchtigkeit konnte praktisch ungehindert in den Scheibenzwischen-

raum eindringen und führte zur Korrosion der low-e-Beschichtungen (Abbildung 7). Außerdem ist auf Abbildung 7 ein unzureichender Butylauftrag an den Kanten und in der Ecke erkennbar. Die Messergebnisse von den Probekörpern dieses Herstellers wurden bei den weiteren Auswertungen nicht mehr berücksichtigt.

Abbildung 6 Gealterter Probekörper mit Einschnürungen des Randverbundes, Hersteller 13

Abbildung 7 Gealterter Probekörper mit korrodierter low-e-Beschichtung und unzureichendem Butylauftrag auf den Kanten oben und rechts sowie in der Ecke, Hersteller 13

Gemäß der EN 1279-2 darf der mittlere I-Faktor den Grenzwert von 20 % nicht überschreiten, Einzelwerte dürfen nicht über 25 % liegen. Etwa die Hälfte der Hersteller verletzen zumindest teilweise diese Vorgaben. Die Unterschiede zwischen den Herstellern sind groß. Ein zu hoher I-Faktor bedeutet nicht zwangsläufig, dass die MIG den Anforderungen der EN 1279-2 grundsätzlich nicht gewachsen sind. Es muss auch die Trockenmittelmenge berücksichtigt werden mit der dieser I-Faktor erreicht wurde. Durch eine Erhöhung der Trockenmittelmenge (sofern das räumlich im Abstandhalter noch möglich ist) kann der I-Faktor bei gleicher Qualität/Dichtheit des Randverbundes gesenkt werden. Allerdings wird es bei sich erhöhenden Belastungen (durch größere SZR und dickere Scheiben) wahr-scheinlich nicht ausreichen, nur die Trockenmittelmenge zu erhöhen. Effektiver und nachhaltiger ist es, die Qualität/Dichtheit des Randverbundes zu verbessern.

In der Abbildung 5 ist keine Korrelation zwischen der Randlast (bzw. dem Aufbau, s. Kapitel 3.1) und dem I-Faktor erkennbar. In einigen Fällen steigt der I-Faktor mit der Randlast an, in anderen Fällen fällt er. Dafür gibt es wahrscheinlich zwei Gründe: erstens, den Einfluss der Trockenmittelmenge auf den I-Faktor, zweitens den generellen Einfluss der Herstellungsqualität.

Åhnlich wie die Trockenmittelmenge und die Anfangsbeladung sind der I-Faktor und seine Streuung interessante Größen für die Hersteller der Probekörper. Diese Größen beantworten jedoch nicht die Kernfrage dieses Forschungsvorhabens: Gibt es einen Einfluss der Randlast auf die Feuchteaufnahme von MIG? Dazu ist es notwendig, die absolute Feuchteaufnahme zu betrachten, wie im folgenden Kapitel.

4.4 Zubeladung durch Alterung

Abbildung 8 präsentiert die Zubeladungen durch Alterung gemäß EN 1279-2 für alle Hersteller (außer 13) und Aufbauten. Durch eine Normierung der Werte mit der jeweiligen Zubeladung des Aufbaus 4/12/4/12/4 wird in Abbildung 9 versucht, den Einfluss der Randlast auf die Zubeladung besser herauszustellen.

Abbildung 8 Mittlere Zubeladung mit Vertrauensbereich von 95 %

Abbildung 9 Mittlere relative Zubeladung mit Vertrauensbereich von 95 %

Die Unterschiede zwischen den Herstellern sind erheblich. Zubeladungen streuen von \leq 1 g (Hersteller 4, 12, 15, 16, 17 und 20) bis zu \geq 2 g (Hersteller 2, 3, 11, 18 und 19). Die übrigen Hersteller liegen zwischen 1 g und 2 g.

Die Zubeladung des Aufbaus 1 (4/12/4/12/4) liegt meistens deutlich unter denen der beiden anderen Aufbauten. Bei sieben Herstellern liegt die Zubeladung für diesen Aufbau sogar unter 0,5 g (Hersteller 4, 6, 9, 10, 12, 14, und 15). Ein Unterschied zwischen den Aufbauten 2 (4/18/4/18/4) und 3 (6/18/4/18/6) ist nicht so deutlich zu erkennen, obwohl tendenziell der Aufbau 6/18/4/18/6 höhere Zubeladungen aufweist als der Aufbau 4/18/4/18/4. Es treten maximale Zubeladungen von 2 bis 4 g auf (Hersteller 2, 3, 11, 18 und 19). Eine Varianzanalyse [5], gefolgt von Post-hoc Tukey Tests [6] der mittleren Zubeladungen, bestätigen den visuellen Eindruck: Es besteht ein signifikanter Unterschied (Konfidenzniveau 99%) zwischen Aufbau 1 und den beiden anderen. Ein statistisch signifikanter Unterschied zwischen Aufbau 2 und 3 ist nicht nachweisbar.

Zusammenfassend lässt sich sagen, ein linearer Zusammenhang zwischen Randlast und Feuchtaufnahme ist auf Grundlage der durchgeführten Messungen nicht erkennbar. Der Anstieg der Zubeladung von Aufbau 2 (4/18/4/18/4) zu Aufbau 3 (6/18/4/18/6) erscheint deutlich geringer als aufgrund der berechneten Randlasten zu vermuten wäre.

4.5 Dickenänderungen

Im ursprünglichen Prüfkonzept, das sich stark an der EN 1279-2 orientierte, war es nicht vorgesehen, die Änderung der Gesamtglasdicke zu ermitteln. Während des Webmeetings wurde vom projektbegleitenden Ausschuss vorgeschlagen, in der zweiten Messrunde die Änderung der Gesamtglasdicke mit zu ermitteln. Daher sind im nachfolgenden "nur" die Änderungen der Gesamtglasdicke für die zweite Messrunde (Probekörper 11-20) dargestellt.

Abbildung 10 und Abbildung 11 zeigen die durch die Alterung hervorgerufenen Dickenänderungen der Probekörper aus der zweiten Runde der Untersuchungen. Abbildung 10 zeigt die absoluten Werte und Abbildung 11 die jeweils auf den Aufbau 4/12/4/12/4 normierten Änderungen. itt

Abbildung 10 Mittlere Dickenänderung mit Vertrauensbereich von 95 %

Abbildung 11 Mittlere relative Dickenänderung mit Vertrauensbereich von 95 %
Wie bei den Feuchteaufnahmefaktoren (Abbildung 5) fällt als Erstes der Hersteller 13 auf. Mit Werten zwischen 2 mm und 4 mm liegen die Dickenänderungen erheblich über denen der anderen Hersteller (um 1 mm). Dies ist nicht überraschend, da sich die Probekörper des Herstellers 13 während der Alterung durch Aufweitung des Randverbundes praktisch geöffnet haben.

Eine Korrelation zwischen den Dickenänderungen und den Zubeladungen (Abbildung 8) ist nicht erkennbar. Hersteller 12 und 20 z.B. weisen ähnlich geringe Dickenänderungen auf, zeigen aber deutlich unterschiedliche Zubeladungen. Im Prinzip das Gleiche gilt für die Hersteller 11 und 14 sowie die Gruppen 17, 18 und 19.

Die Dickenänderungen des Aufbaus 4/12/4/12/4 sind geringer als die Dickenänderungen der beiden anderen Aufbauten, welche sich nicht klar unterscheiden lassen.

Die Unsicherheiten (Größe der Vertrauensbereiche) der Dickenänderungen sind relativ gesehen größer als die der Zubeladungen.

4.6 Visuelle Inspektion der Probekörper

Wie bereits in Kapitel 4.3 (Abbildung 6, Abbildung 7) erwähnt, wurden einige Probekörper nach der Klimalagerung einer Inspektion (visuell, Klapptest) unterzogen, um nach Ursachen für "auffällige" Ergebnisse zu suchen. Im Rahmen dieses Forschungsvorhabens war es aber nicht möglich, alle Probekörper zu inspizieren, zu dokumentieren und die Beobachtungen zu den jeweiligen Messergebnissen in Beziehung zu setzen. Im Folgenden sind daher nur einige weitere Beobachtungen/Auffälligkeiten zusammengetragen.

Unzureichende Butylaufträge auf den Kanten (Abbildung 12) und insbesondere in den Ecken (Abbildung 13, Abbildung 14), wo die Abstandhalter durch den Biegevorgang aufgeweitet sind, waren häufiger zu beobachten.

Abbildung 12 Unzureichender Butylauftrag auf Abstandhalter

Abbildung 13 Unzureichende Butylabdeckung an durch Biegung auf geweiteter Abstandhalterecke; Lufteinschlüsse (grau) im Sekundärdichtstoff am Anfangs-/Endpunkt der automatischen Versiegelung – die Dichtung scheint an dieser Stelle praktisch nur einstufig zu sein.

Abbildung 14 Aufgeklappter Probekörper. Unzureichender Butylauftrag in der Ecke und auf der Kante.

Des Weiteren gab es auch mehrere Fälle mit Lufteinschlüssen an den Anfangs-/Endpunkten der automatischen Versiegelung (Abbildung 13) und entlang der dem Sekundärdichtstoff zugewandten Schrägen der Abstandhalter (Abbildung 15, Abbildung 16).

Bei angemessener Schrägbeleuchtung der Probekörper wird eine low-e-Beschichtung orange-braun sichtbar, wenn sie mit Butyl oder Dichtstoff in Kontakt ist (Abbildung 15, Abbildung 16 rechts). Abbildung 15 zeigt eine gleichmäßige Entschichtung des Scheibenrandes. In Abbildung 16 dagegen ist keine Randentschichtung sichtbar mit Ausnahme der Ecke oben links. Die Beschichtung könnte von der Glaskante ausgehend Feuchtigkeit aufnehmen und korrodieren. Dadurch würde letztendlich ein Pfad für das Eindringen von Feuchtigkeit in den Scheibenzwischenraum und den Austritt von Füllgas geschaffen.

Abbildung 15 Lufteinschluss (grau) entlang der dem Sekundärdichtstoff zugewandten Schräge des Abstandhalters

Abbildung 16 Lufteinschlüsse (grau) entlang der dem Sekundärdichtstoff zugewandten Schräge des Abstandhalters; rechts: in Schrägbeleuchtung wird eine unzureichende Randentschichtung sichtbar

Abbildung 17 zeigt zwei weitere Beispiele ungenügender Randentschichtung. Bei dem rechten Beispiel von einem gealterten Probekörper ist der wellenförmige Verlauf der Butyllinie auffällig. Das Butyl ist dort durch die Randlast während der Klimaalterung in den Scheibenzwischenraum gepresst worden. Abbildung 18 zeigt das eingepresste Butyl etwas deutlicher; nicht nur an der äußeren Scheibe, sondern ganz besonders auch an der mittleren Scheibe. Die Randentschichtung erscheint hier ausreichend.

Abbildung 17 Links: keine Randentschichtung; rechts: ungenügende Randentschichtung, Butyl wellenförmig in den SZR gepresst

Abbildung 18 Butyl in den SZR gepresst, gute Randentschichtung

Das Einpressen von Butyl in den Scheibenzwischenraum tritt recht häufig auf und wird im direkten Vergleich von Probekörpern im Lieferzustand und gealterten Zustand besonders deutlich (Abbildung 19, Abbildung 20). In den Mitten der langen Kanten wird während der Alterung mehr Butyl in den SZR gepresst als in den Ecken (Abbildung 20). Das entspricht der Theorie, die besagt, dass die höchsten Randlasten in den Mitten der langen Kanten auftreten.

Abbildung 19 Zwei Probekörper vom selben Hersteller: links im Lieferzustand, rechts nach Klimaalterung

Abbildung 20 Probekörper wie in Abbildung 19: links im Lieferzustand, rechts nach Klima alterung. In der Mitte der langen Kante ist mehr Butyl in den SZR gepresst worden als in der Ecke.

Das Einpressen von Butyl in den Scheibenzwischenraum bedeutet aber nicht, dass die Scheibendicke reduziert ist. Im Gegenteil, wie bereits in Kapitel 4.5 diskutiert, erfolgt eine Aufweitung der Probekörper durch die Klimabelastung. Die Aufweitung der Dichtungsebenen kann durch das Einführen einer Dickensonde demonstriert werden (Abbildung 21).

Abbildung 21 Dickensonde (0,3 mm dick, ca. 3 mm eingeführt) in einer Butyldichtung der mittleren Scheibe

Ein guter Indikator für die Qualität der Haftung zwischen Glas und Butyl ist der Fadenzug beim sogenannten Klapptest. Dazu wird an einem MIG-Probekörper der Verbund zwischen der oberen Glasscheibe und dem Abstandhalter an drei Seiten (kurz-lang-kurz) mit einem Messer durchtrennt. Dann lässt sich die obere Scheibe anheben und aufklappen wie ein Buchdeckel. Zunächst sollte die Scheibe nur wenige Zentimeter angehoben und dabei beobachtet werden, was für ein Fadenzug des Butyls an der vierten Seite sichtbar wird. In den folgenden Beispielen ist das Butyl eigentlich schon fast überdehnt; die obere Scheibe wurde relativ weit angehoben, um Fotos des Fadenzugs machen zu können. Etwa die Hälfte der Dehnung würde normalerweise ausreichen, um den Fadenzug rein visuell beurteilen zu können. In den Abbildung 22 bis Abbildung 25 sind mehrere Beispiele guter und schlechter Haftung zwischen Glas und Butyl wiedergegeben. Ist die Haftung eher schlecht, so ist es auch wahrscheinlicher, dass ein Pfad für Feuchte in den SZR bzw. für Füllgas aus dem SZR heraus besteht. Die Dauerhaftigkeit des Isolierglases ist eingeschränkt. Das Gleiche gilt, wenn bereits während der Klimaalterung kohäsives Versagen im Butyl auftritt. Im Klapptest ist dann kein Fadenzug sichtbar, die gegenüberliegenden Butyloberflächen erscheinen glatt (Abbildung 26).

Abbildung 22 Beispiele für guten Fadenzug: Geschlossener Vorhang von Butylfäden

Abbildung 23 Immer noch recht guter Fadenzug. Allerdings sind die Frontlinien nicht mehr geradlinig wie in Abbildung 22. In den Eindellungen bestand keine Haftung mehr zwischen Abstandhalter und Butyl.

Abbildung 24 Butyl beim Aufklappen überdehnt, alle Fäden gerissen

Abbildung 25 Ausschnitt aus Abbildung 24. In dem durch Pfeil markierten Bereich befindet sich kein Butyl auf dem Glas. Es scheint dort keine Haftung zwischen dem Butyl und dem Glas bestanden zu haben.

Abbildung 26 Beispiele für kohäsives Versagen im Butyl: kein Fadenzug

Einige potenzielle Undichtheiten des Randverbundes ließen sich leicht vermeiden. So war in einem Fall der Abstandhalter offenbar nicht lang genug, und es wurde ein kurzes Stück mit zwei Längsverbindern eingefügt (Abbildung 27). Wenn dann auch noch eine große Lücke zwischen den Abstandhalterenden an einer Verbindungsstelle besteht und keine Butylierung auf der Rückseite erfolgt ist (Abbildung 28), so kann Feuchtigkeit sehr leicht in den Scheibenzwischenraum einwandern bzw. das Füllgas entweichen. An einer solchen Stelle besteht nur eine einstufige Abdichtung durch Sekundärdichtstoff.

Abbildung 27 Der Abstandhalter war zu kurz, es wurde ein kurzes zusätzliches Stück mit zwei Längs verbindern eingefügt. Die Draufsicht zeigt, dass die Butylierung ungenügend war.

Abbildung 28 Eine große Lücke an der Verbindungsstelle, keine Butylierung auf der Rückseite

5 Schlussfolgerungen und Empfehlungen

In diesem Forschungsvorhaben wurde versucht den Zusammenhang zwischen der Feuchtigkeitsaufnahme (EN 1279-2) und der Randlast in Dreifach-Wärmedämmglas zu ermitteln. Die Randlast konnte über die Größe der Scheibenzwischenräume und die Scheibendicken der Probekörper variiert werden:

	<u>R</u> (<u>el. maximale Randlast *</u>	
Aufbau 1	4-12-4-12-4	100 %	
Aufbau 2	4-18-4-18-4	120 %	
Aufbau 3	6-18-4-18-6	160 %	
* Berechnet n	nit Üko Professional 3S	Vers. 9.1	
Belastung in	Anlehnung an EN 1279)-2	
Die Randlas	ten sind als relative We	rte, bezogen auf Aufbau 1, angegebe	en

Es wurden nur starre Randverbundsysteme (Hohlprofilabstandhalter) mit schüttbaren Trockenmitteln untersucht. Probekörper waren von zwanzig Herstellern geliefert worden.

Die Ergebnisse lassen sich wie folgt zusammenfassen:

- Höhere Randlasten führen zu höheren Feuchteaufnahmen.
- Ein linearer Zusammenhang zwischen Randlast und Feuchteaufnahme konnte im Rahmen der Untersuchungen nicht ermittelt werden. So zeigten die Scheiben mit dem Aufbau 2 im Vergleich zu denen mit dem Aufbau 1 deutlich höhere Feuchteaufnahmen. Der Anstieg der Feuchteaufnahme von Aufbau 2 zu Aufbau 3 war jedoch weniger deutlich, als aufgrund der berechneten Randlasten zu vermuten wäre.
- Der Einfluss der Herstellungsqualität auf die Feuchteaufnahme zeigte sich bei den Untersuchungen als mindestens genauso stark wie der Einfluss der Randlast, und er überlagerte die Ergebnisse deutlich.
- Aus dem vorangehenden Punkt folgt direkt: Einer erhöhten Prozesssicherheit bei der Herstellung von MIG mit erhöhten Randlasten (3-fach-MIG mit großem SZR, dicke Scheiben) kommt eine große Bedeutung zu.
- Der Feuchtigkeitsaufnahmefaktor I ist kein hinreichendes Kriterium zur Beurteilung der Qualität eines Randverbundes, da er neben der eigentlichen Herstellungsqualität auch von der Trockenmittelmenge abhängig ist.

Ferner ist anzumerken:

- Die Ergebnisse der hier durchgeführten Untersuchungen zur Feuchteaufnahme sind nicht direkt auf Gasverlustraten übertragbar.
- Es ist unklar, ob oder inwieweit die hier gewonnenen Erkenntnisse übertragbar sind auf Mehrscheiben-Isoliergläser mit flexiblen Abstandhaltern mit integriertem Trockenmittel.

 Während lange, schmale Formate (mit einer kurzen Kante < 65 cm) das höchste Glasbruchrisiko unter Klimalast aufweisen [7], ergeben sich die höchsten Randlasten bei quadratischen Formaten (mit Kantenlängen von 40 – 60 cm) [1].

Die Ergebnisse dieses Forschungsvorhabens sollten zusammen mit denen des Projektes "DuraSeal" [4] betrachtet werden. Während es in diesem Projekt auch ganz wesentlich darum ging einen Überblick über die in der Industrie von Hersteller zu Hersteller auftretenden Streuungen zu gewinnen, wurden im Projekt DuraSeal die Produktionseinflüsse minimiert, indem alle Probekörper in einem Werk hergestellt wurden. Stattdessen wurden neben SZR und Scheibendicke auch Faktoren wie Abstandhaltertyp, Butylauftrag, Dichtstoff, Rückenüberdeckung etc. gezielt variiert in der Absicht, funktionelle Zusammenhänge zwischen den Faktoren und der resultierenden Dauerhaftigkeit zu ermitteln. Wenn die gewonnenen Erkenntnisse vielleicht auch nicht unmittelbar auf andere Systeme übertragbar sind, so lassen sich wahrscheinlich doch einige Hinweise zur Verbesserung von Herstellungsprozessen ableiten.

Des Weiteren sollten mehr Dreifach-Wärmedämmgläser im Rahmen der externen Güteüberwachung (RAL) Dauerhaftigkeitsprüfungen gemäß EN 1279 unterzogen werden (anstatt des von der Norm vorgeschriebenen Zweifach-Glases), um langfristig eine breitere Datenbasis für Dreifach-Wärmedämmglas zu schaffen und damit zur Verbesserung der Prozesssicherheit beizutragen.

Zwei weitere Themenbereiche könnten für eine Fortführung der Arbeit erwogen werden:

- Der Einfluss der Randlast auf die Gasverlustrate (EN 1279-3) in Dreifach-Wärmedämmglas: Der Gasgehalt im Scheibenzwischenraum und die Gasverlustrate haben einen wesentlichen Einfluss auf die Wärmedämmung eines MIG und die Geschwindigkeit mit der sich die Wärmedämmung im Laufe der Nutzungsdauer vermindert. Untersuchungen gemäß EN 1279-3 sind allerdings sehr zeit- und kostenaufwändig.
- Der Einfluss der Randlast auf die Dauerhaftigkeit von Dreifach-Wärmedämmglas mit flexiblen Abstandhaltern und integriertem Trockenmittel: Diese Systeme nehmen einen zunehmenden Anteil des Marktes in Anspruch. Der Aufwand zur Bestimmung der Feuchtigkeitsaufnahme (über Karl-Fischer-Titration) ist wesentlich größer als bei Hohlprofilsystemen mit schüttbaren Trockenmitteln (etwa Faktor 8). Die Anzahl der Probekörper müsste wahrscheinlich reduziert werden im Vergleich zu diesem Projekt. Der Aufwand zur Bestimmung der Gasverlustrate wäre der Gleiche wie für Systeme mit schüttbaren Trockenmitteln.

6 Literaturverzeichnis

- Feldmeier, F. Bericht G1109-3: Beanspruchung des Isolierglasrandverbundes durch interne Lasten, September 2011 im Auftrag des Bundesverbandes Flachglas e.V.
- [2] DIN EN 1279 Glas im Bauwesen - Mehrscheiben-Isolierglas Berlin, Beuth Verlag GmbH
- [3] Feldmeier, F.;
 Klimabelastung und Lastverteilung bei Isolierglas, Stahlbau 75 (2006), Heft 6, Seite 467 bis 478
- [4] Buddenberg, S.; Hof, P.; Beyer, J.; Oechsner, M. (2015): Dauerhaftigkeit und Dimensionierung des Randverbundes von Mehrscheibenisolierglas in Abhängigkeit der Klimalast bei Zweifach- und Dreifachisolierglas - DuraSeal (IGF-Vorhaben 17235 N). Darmstadt: TU-Darmstadt - Staatliche Materialprüfungsanstalt.
- [5] https://de.wikipedia.org/wiki/Varianzanalyse
- [6] https://de.wikipedia.org/wiki/Post-hoc-Test#Tests_f.C3.BCr_den_balancierten_Fall
- [7] Rose, A.; Sack, N.
 Forschungsbericht "Energieeffizientes Mehrscheiben-Isolierglas Untersuchungen von technischen Maßnahmen zur Reduzierung des Flächengewichtes"
 ift Rosenheim, Dezember 2012

7 Danksagung

Das diesem Bericht zugrunde liegende Vorhaben wurde mit Mitteln der Forschungsinitiative Zukunft Bau des Bundesinstitutes für Bau-, Stadt- und Raumordnung gefördert (Aktenzeichen: II 3-F20-12-1-156 / SWD-10.08.18.7-13.35).

Die Verantwortung für den Inhalt des Berichts liegt bei den Autoren.

Das Forschungsprojekt wurde in beratender Funktion durch eine projektbegleitende Arbeitsgruppe betreut. Den Mitgliedern des Beratergremiums gilt besonderer Dank:

Herr Prof. Dr. Franz Feldmeier	Hochschule Rosenheim
Herr DrIng. Peter Hof	MPA-IfW, Darmstadt
Herr Dr. Rüdiger Reichardt	Fenzi Belgium nv/sa, Vilvoorde, Belgien
Herr Dr. Michael Brüggemann	Forschungsinitiative Zukunft Bau

Besonderer Dank gebührt auch dem Bundesverband Flachglas e.V., der das gesamte Projekt sowohl ideell als auch finanziell unterstützte,

Bundesverband Flachglas e.V.,

sowie den folgenden Mitgliedern des Bundesverbandes, die die Probekörper unentgeltlich zur Verfügung stellten:

Glaswerke Arnold GmbH & Co. KG, Remshalden Energy Glas GmbH, Wolfhagen Glaskontor GmbH, Bamberg Interpane Glas Industrie AG, Lauenförde Glas Leuchtle GmbH, Dillingen/Saar Glas Müller Vetri AG, Bozen, Italien Glas Natter GmbH, Regensburg Petschenig glastec GmbH, Leopoldsdorf, Österreich Risse Glas GmbH, Rüthen Rosenheimer Flachglashandel, Flintsbach Glas Schneider GmbH & Co. KG, Hachenburg Glas-Schöninger GmbH & Co. KG, Weiden in der Oberpfalz Semcoglas Holding GmbH, Westerstede – Standort Bramsche Semcoglas Holding GmbH, Westerstede – Standort Wassenberg Teutemacher Glas GmbH, Warendorf Thermamet Isolierglas GmbH, Rietberg Glas Trösch GmbH, Memmingen Flachglas Uhsmannsdorf GmbH, Rothenburg/Oberlausitz Hunsrücker Glasveredelung Wagner GmbH & Co. KG, Kirchberg (Hunsrück)

Hinweis: Die Auflistung erfolgt in alphabetischer Reihenfolge. Die im Bericht verwendeten Hersteller-Nrn. wurden nach dem Zufallsprinzip vergeben.

Anhang: Einzelergebnisse der Hersteller

Erläuterung der Tabellenfelder in Kapitel 3.3

Hersteller	1		Abstandhalter:			Edelstahl					
			Sekundärdich	ntstoff	PU						
			To	in %	22						
	Lieferzustan	d			Gealtert				"Z"		
				"Tì"	"m fe"	"m tr"			Zubeladung	Feucht.	
	TM	TM		Anfangs-	TM	TM	"B"	"Tf"	durch	aufn.faktor	
	entnommen	aetrocknet	Beladung	beladung	entnommen	getrocknet	Beladung	Beladung	Alterung	1	
	in a	in a	in a	in %	in a	in a	in a	in %	in a	in %	
36 mm	62.817	59.509	3.308	5.6	65.496	62.087	3.409	5.49	1.21	10.5	
4-12-4-12-4	57.512	54,422	3.090	5.7	64.216	60.866	3.350	5.5	1.19	10.6	
	50.065	47 820	2 245	4.7	66,968	63 358	3 610	57	1.36	11.7	
	39.373	38.454	0.919	2.4	58,605	55.316	3,289	5.9	1.33	13.0	
	70.828	69 270	1,558	22	61,829	59.050	2 779	4 7	0.69	6.3	
	42 842	41 617	1,000	2.9	66 324	63 363	2,961	4.7	0.71	6.1	
	60,654	59 243	1 411	2.4	60,239	58 569	1,670	2.9	0,11	0,1	
	55 450	54 114	1,336	2.5	65 546	63,656	1,890	3.0			
	00,100	0.,	1,000	2,0	65,821	61 446	4 375	7 1	2 20	19.4	
					57,930	55 670	2 260	4.06	0.29	2.8	
Mittel	54.9	53.1	19	3.5	63.3	60 3	3.0	49	1 12	10.0	
Stabw	10.5	10.1	0.9	1.5	3.4	3 1	0.8	13	0.58	5.1	
Median	56.5	54.3	1.5	2.7	64.9	61.2	3.1	5.1	1 20	10.6	
Mediali	50,5	54,5	1,5	2,1	04,3	01,2	3,1	3,1	1,20	10,0	
48 mm	64,190	62,842	1,348	2,1	93,413	90,527	2,886	3,2	0,94	5,2	
4-18-4-18-4	100,951	98,794	2,157	2,2	96,388	93,370	3,018	3,2	1,01	5,5	
	100,634	98,555	2,079	2,1	85,255	82,267	2,988	3,6	1,22	7,5	
	93,221	91,252	1,969	2,2	96,501	93,630	2,871	3,1	0,86	4,6	
	99,904	97,785	2,119	2,2	93,925	91,181	2,744	3,0	0,78	4,3	
	99,518	97,469	2,049	2,1	93,980	91,328	2,652	2,9	0,69	3,8	
	98,548	96,436	2,112	2,2	87,650	84,583	3,067	3,6	1,25	7,4	
	100,808	98,693	2,115	2,1	96,026	93,040	2,986	3,2	0,99	5,3	
					95,471	92,303	3,168	3,4	1,18	6,5	
					85,410	82,363	3,047	3,7	1,28	7,8	
Mittel	94.7	92.7	2.0	2.1	92.4	89.5	2.9	3.3	1.02	5.8	
Stabw	12.6	12.3	0.3	0.0	4.5	4.6	0.2	0.3	0.21	1.4	
Median	99,7	97,6	2,1	2,2	94,0	91,3	3,0	3,2	1,00	5,4	
		,		,						,	
50	400.017	00.010	4.077		400.101	07.700	0.000		4.00	<u> </u>	
52 mm	103,217	98,840	4,377	4,4	100,434	97,796	2,638	2,7	-1,63	-9,4	
6-18-4-18-6	91,623	88,325	3,298	3,7	92,509	89,962	2,547	2,8	-1,38	-8,7	
	89,119	84,772	4,347	5,1	101,044	98,384	2,660	2,7	-1,63	-9,4	
	99,982	95,584	4,398	4,6	101,498	98,549	2,949	3,0	-1,35	-7,8	
	98,706	94,835	3,8/1	4,1	99,359	96,765	2,594	2,7	-1,63	-9,5	
	100,159	96,084	4,075	4,2	101,454	98,773	2,681	2,7	-1,63	-9,3	
	92,081	88,157	3,924	4,5	99,588	96,924	2,664	2,7	-1,56	-9,1	
	97,009	93,076	3,933	4,2	98,748	96,098	2,650	2,8	-1,54	-9,1	
					94,934	91,821	3,113	3,4	-0,89	-5,5	
					99,683	96,826	2,857	3,0	-1,37	-8,0	
Mittel	96,5	92,5	4,0	4,4	98,9	96,2	2,7	2,8	-1,46	-8,6	
Stabw	5,0	4,8	0,4	0,4	2,9	3,0	0,2	0,2	0,23	1,2	
wealan	97,9	94,0	4,0	4,3	99,6	96,9	2,1	∠,8	-1,55	-9,1	

Aufbau 4-12-4-12-4: Die gelb markierten Werte für Zubeladung und I-Faktor würde man u.U. bei einer MIG-Prüfung gemäß EN 1279 nicht in der Auswertung berücksichtigen. Eventuell war einer der SZR während der Klimabelastung praktisch offen (hohe Feuchtigkeitsaufnahme) und hat dadurch den anderen SZR entlastet (geringe Feuchtigkeitsaufnahme). Das lässt sich aber im Detail nicht nachweisen. Daher wurden diese Werte in der Auswertung (Graphen in Kapitel 1) belassen.

Aufbau 6-18-4-18-6: Durch Vertauschen von Feldern in der Auswertesoftware haben sich hier negative Werte für Zubeladung und I-Faktor ergeben. Diese wurden aber als positive Werte in die Auswertung (Graphen in Kapitel 1) übernommen.

Horotollor	2		Abstandbalta	-	Kunststoff / m	otollicobo Diff	ucionconorro			
neistellei	2		Abstandnaite	l.	Runsision / II	letallische Dil	usionssperre			
			Sekundardici	itstoil.	P3					
			IC	IN %	20					
					0				11 - 711	
	Lieferzustan	a			Gealtert				" <u>Z</u> "	F
	714	77.4		" II" A - 6	"M te"	"M tr"		0.775.0	Zubeladung	Feucht.
	IM	IM		Antangs-	IM	IM	.B.	" It"	durch	auth.taktor
	entnommen	getrocknet	Beladung	beladung	entnommen	getrocknet	Beladung	Beladung	Alterung	<u> </u>
	in g	in g	in g	in %	in g	in g	in g	in %	in g	in %
36 mm	29,849	29,270	0,579	2,0	32,317	30,615	1,702	5,6	1,08	19,6
4-12-4-12-4	18,603	18,217	0,386	2,1	32,704	31,136	1,568	5,0	0,93	16,7
	19,846	19,443	0,403	2,1	32,544	30,628	1,916	6,3	1,29	23,5
	29,113	28,549	0,564	2,0	13,550	12,409	1,141	9,2	0,89	39,9
	18,832	18,441	0,391	2,1	17,858	16,198	1,660	10,2	1,33	45,7
	18,161	17,785	0,376	2,1	19,677	18,175	1,502	8,3	1,13	34,7
	27,907	27,370	0,537	2,0	32,632	30,848	1,784	5,8	1,16	20,9
	27,808	27,278	0,530	1,9	32,317	30,906	1,411	4,6	0,78	14,1
					32,515	30,940	1,575	5,1	0,95	17,0
					33,432	31,860	1,572	4,9	0,92	16,1
Mittel	23,8	23,3	0,5	2,0	28,0	26,4	1,6	6,5	1,05	24,8
Stabw	5,3	5,2	0,1	0,1	7,7	7,6	0,2	2,0	0,18	11,2
Median	23.8	23.4	0.5	2.0	32.4	30.7	1.6	5.7	1.01	20.2
10	10 705	17.001	0.001		50.050	E 0.00 <i>1</i>			0.11	
48 mm	48,785	47,881	0,904	1,9	53,650	50,294	3,356	6,7	2,41	26,5
4-18-4-18-4	49,268	48,361	0,907	1,9	54,230	50,615	3,615	7,1	2,67	29,1
	49,089	48,191	0,898	1,9	51,739	48,078	3,661	7,6	2,76	31,7
	50,211	49,301	0,910	1,8	52,408	49,079	3,329	6,8	2,41	27,1
	49,275	48,381	0,894	1,8	53,480	50,258	3,222	6,4	2,28	25,0
	48,142	47,277	0,865	1,8	53,025	49,758	3,267	6,6	2,33	25,9
	34,050	33,397	0,653	2,0	53,967	50,403	3,564	7,1	2,62	28,7
	40,057	39,311	0,746	1,9	53,972	50,774	3,198	6,3	2,25	24,4
					53,097	49,999	3,098	6,2	2,16	23,8
					53,658	50,452	3,206	6,4	2,26	24,7
Mittel	46,1	45,3	0,8	1,9	53,3	50,0	3,4	6,7	2,41	26,7
Stabw	5,8	5,7	0,1	0,0	0,8	0,8	0,2	0,4	0,20	2,5
Median	48,9	48,0	0,9	1,9	53,6	50,3	3,3	6,6	2,37	26,2
52 mm	47,992	47,120	0,872	1,9	52,225	49,104	3,121	6,4	2,19	24,7
6-18-4-18-6	47,473	46,615	0,858	1,8	52,225	49,104	3,121	6,4	2,19	24,7
	43.934	43.161	0.773	1.8	51.924	48,799	3.125	6.4	2.20	24.9
	48.333	47,467	0,866	1.8	51.955	49,023	2,932	6.0	2,01	22.6
	47,255	46,414	0,841	1.8	53,076	49,954	3.122	6.2	2,18	24.1
	48,390	47,519	0.871	1.8	52,251	49,242	3.009	6 1	2.08	23.3
	35 103	34 427	0.676	2.0	51,339	48 024	3 315	6.9	2 41	27.7
	21 320	20,866	0.454	2,0	48 286	45 661	2 625	5.7	1.76	21.3
	21,020	20,000	0,-10-1	<u> </u>	52 555	49,426	3 120	63	2 20	24.5
					33,408	30,813	2 595	8.4	2,20	36.1
Mittel	42.5	<i>A</i> 1 7	0.8	10	40 0	46 0	30	65	2,01	25 4
Stabw	96	95	0,0	0.1	45,5 5 Q	5.8	0.2	0,5	0 17	<u>2</u> 3,4 <u>4</u> 1
Median	47 /	46.5	0,1	1.9	52.1	40.1	3.1	63	2 10	24.6
meulan	47,4	40,5	0,0	1,0	J2, I	43,1	3,1	0,5	2,13	24,0

Hersteller	3	3 Abstandhalter:		Kunststoff / m	netallische Diff	usionssperre				
			Sekundärdich	ntstoff:	PS					
			Тс	in %	22					
	Lieferzustan	d			Gealtert				"Z"	
				"Tì"	"M fe"	"m tr"			Zubeladung	Feucht.
	TM	TM		Anfangs-	TM	TM	"B"	"Tf"	durch	aufn.faktor
	entnommen	getrocknet	Beladung	beladung	entnommen	getrocknet	Beladung	Beladung	Alterung	I
	in g	in g	in g	in %	in g	in g	in g	in %	in g	in %
36 mm	20,182	19,816	0,366	1,8	23,276	21,252	2,024	9,52	1,62	37,9
4-12-4-12-4	21,652	21,264	0,388	1,8	22,954	20,608	2,346	11,4	1,95	47,2
	20,457	20,064	0,393	2,0	22,786	19,929	2,857	14,3	2,48	61,9
	22,163	21,749	0,414	1,9	23,181	20,859	2,322	11,1	1,92	45,9
	22,125	21,724	0,401	1,8	23,706	19,566	4,140	21,2		
	20,362	19,982	0,380	1,9	22,872	20,820	2,052	9,9	1,66	39,6
	18,289	17,912	0,377	2,1	21,212	18,720	2,492	13,3	2,14	56,8
	20,292	19,924	0,368	1,8	18,763	16,685	2,078	12,5	1,76	52,5
					24,265	21,381	2,884	13,5	2,48	57,6
					22,904	20,961	1,943	9,27	1,54	36,7
Mittel	20,7	20,3	0,4	1,9	22,6	20,1	2,5	12,6	1,95	48,4
Stabw	1,3	1,3	0,0	0,1	1,6	1,5	0,7	3,5	0,35	9,3
Median	20,4	20,0	0,4	1,9	22,9	20,7	2,3	11,9	1,92	47,2
48 mm	64,943	63,978	0,965	1,5	74,285	69,992	4,293	6,1	3,22	22,5
4-18-4-18-4	75,217	74,078	1,139	1,5	70,344	66,665	3,679	5,5	2,65	19,5
	67,550	66,552	0,998	1,5	69,317	65,134	4,183	6,4	3,18	23,9
	61,123	60,186	0,937	1,6	74,658	71,088	3,570	5,0	2,48	17,0
	57,359	56,471	0,888	1,6	69,296	64,824	4,472	6,9	3,47	26,2
	73,561	72,470	1,091	1,5	75,556	72,189	3,367	4,7	2,26	15,3
	66,098	65,086	1,012	1,6	34,467	30,624	3,843	12,5	3,37	53,8
	60,144	59,211	0,933	1,6	35,628	32,493	3,135	9,6	2,63	39,6
					66,631	62,606	4,025	6,4	3,06	23,9
					71,597	68,368	3,229	4,7	2,18	15,6
Mittel	65,7	64,8	1,0	1,5	64,2	60,4	3,8	6,8	2,85	25,7
Stabw	6,3	6,2	0,1	0,0	15,6	15,5	0,5	2,5	0,47	12,1
Median	65,5	64,5	1,0	1,5	69,8	65,9	3,8	6,3	2,86	23,2
52 mm	73 502	72 515	1 077	15	68 176	63 703	4 473	7.0	3 48	26.7
6-18-4-18-6	66 447	65 414	1 033	1.6	75 034	70 414	4 620	6.6	3.52	24.5
	68 274	67 197	1.078	1.6	68 249	63 557	4 692	7.4	3,70	28.5
	75.025	73 874	1,070	1,0	72 457	67 921	4,536	67	3.48	25,5
	33 541	33,006	0.535	1,0	70,197	65 671	4,536	6.9	3,50	26,1
	73 741	72 635	1 106	1.5	74 516	69 527	4 989	7.2	3 01	27.5
	73 782	72 673	1 100	1.5	69 900	64 832	5 068	7.8	4.06	30.6
	66 913	65 880	1,103	1,0	71 433	66 955	4 478	67	3 44	25.1
	00,010	00,003	1,027	1,0	69 306	65 423	3 073	61	2 95	20,1
					73 000	69 360	4 540	6.5	3.46	24.4
Mittel	66.4	65.4	10	16	71 2	66 7	4.6	6.0	3.55	2, 26 1
Stabw	13.7	13.5	0.2	0.0	25	2.5	-,0	0,5	0.30	23,1
Median	70.9	69.9	1 1	1.6	70.8	66 3	4.5	6.8	3.49	-,- 25.6
moulan	10,5	00,0	•,•	1,0	10,0	00,0	т, с	0,0	3,43	20,0

Horotollor	4	Abstandhalter:		Kunststoff / m						
neistellei	4		Abstandnaite	I.	Runsision / II	letallische Dil	usionssperre			
			Sekundardici	itstoil.	PU 00					
			IC	IN %	20					
		•			0				11 - 711	
	Lieferzustan	a			Gealtert				" <u>Z</u> "	F
	714	77.4		" I I" A - 6	"M te"	"M tr"		0.775.0	Zubeladung	Feucht.
	IM	IM		Antangs-	IM	IM	.B.	" It"	durch	auth.taktor
	entnommen	getrocknet	Beladung	beladung	entnommen	getrocknet	Beladung	Beladung	Alterung	1
	in g	in g	in g	in %	in g	in g	in g	in %	in g	in %
36 mm	21,047	20,754	0,293	1,4	21,740	21,135	0,605	2,86	0,29	7,5
4-12-4-12-4	14,191	13,960	0,231	1,7	20,749	20,149	0,600	3,0	0,30	8,1
	21,089	20,787	0,302	1,5	20,511	19,880	0,631	3,2	0,34	9,2
	21,188	20,888	0,300	1,4	20,765	20,136	0,629	3,1	0,33	8,9
	20,840	20,545	0,295	1,4	18,377	17,816	0,561	3,1	0,30	9,0
	19,968	19,658	0,310	1,6	19,829	19,256	0,573	3,0	0,29	8,1
	20,840	20,547	0,293	1,4	21,140	20,490	0,650	3,2	0,35	9,1
	20,755	20,461	0,294	1,4	18,551	17,974	0,577	3,2	0,31	9,3
					21,515	20,923	0,592	2,8	0,28	7,3
					20,431	19,801	0,630	3,18	0,34	9,2
Mittel	20,0	19,7	0,3	1,5	20,4	19,8	0,6	3,1	0,31	8,6
Stabw	2,4	2,4	0,0	0,1	1,1	1,1	0,0	0,1	0,02	0,8
Median	20.8	20.5	0.3	1.4	20.6	20.0	0.6	3.1	0.31	8.9
48 mm	34,685	34,218	0,467	1,4	38,238	37,039	1,199	3,2	0,73	10,6
4-18-4-18-4	36,476	36,025	0,451	1,3	37,800	36,672	1,128	3,1	0,67	9,7
	37,367	36,914	0,453	1,2	37,087	35,951	1,136	3,2	0,68	10,1
	37,956	37,490	0,466	1,2	36,894	35,750	1,144	3,2	0,69	10,4
	38,226	37,754	0,472	1,3	38,379	37,240	1,139	3,1	0,67	9,6
	38,577	38,101	0,476	1,2	30,303	29,177	1,126	3,9	0,76	13,9
	37,058	36,604	0,454	1,2	33,342	32,042	1,300	4,1	0,90	14,9
	37,708	37,244	0,464	1,2	35,603	34,450	1,153	3,3	0,72	11,1
				,	40.484	39,109	1.375	3.5	0.88	12.0
					38.838	37.711	1.127	3.0	0.65	9.2
Mittel	37.3	36.8	0.5	1.3	36.7	35.5	1.2	3.3	0.74	11.2
Stabw	12	1 2	0,0	0.0	3.0	29	0.1	0.4	0.09	19
Median	37.5	37.1	0.5	1.2	37.4	36.3	1.1	3.2	0.71	10.5
			.,	,			,	-,		
52 mm	24,683	24,335	0,348	1,4	31,487	30,133	1,354	4,5	0,96	17,1
6-18-4-18-6	38,600	38,115	0,485	1,3	32,962	31,688	1,274	4,0	0,86	14,6
	32,332	31,910	0,422	1,3	32,880	31,415	1,465	4,7	1,06	18,0
	32,767	32,337	0,430	1,3	36,917	35,651	1,266	3,6	0,80	12,1
	37,414	36,943	0,471	1,3	33,405	31,998	1,407	4,4	0,99	16,6
	37,541	37,077	0,464	1,3	38,125	36,696	1,429	3,9	0,95	13,9
	37,398	36,935	0,463	1,3	36,963	35,539	1,424	4,0	0,96	14,5
	38,187	37,718	0,469	1,2	37,850	36,474	1,376	3,8	0,90	13,2
					37,425	35,953	1,472	4,1	1,01	15,0
					38,945	37,623	1,322	3,5	0,83	11,9
Mittel	34,9	34,4	0,4	1,3	35,7	34,3	1,4	4,0	0,93	14,7
Stabw	4,8	4,7	0,0	0,1	2,7	2,7	0,1	0,4	0,08	2,1
Median	37,4	36,9	0,5	1,3	36,9	35,6	1,4	4,0	0,96	14,5

Hersteller	5	5 Abstandhalter:		Kunststoff / m	netallische Diff	usionssperre		_		
			Sekundärdich	ntstoff:	PS					
			Тс	in %	22					
	Lieferzustan	d			Gealtert				"Z"	
				"Ti"	"m fe"	"m tr"			Zubeladung	Feucht.
	TM	TM		Anfangs-	TM	TM	"B"	"Tf"	durch	aufn.faktor
	entnommen	getrocknet	Beladung	beladung	entnommen	getrocknet	Beladung	Beladung	Alterung	I
	in g	in g	in g	in %	in g	in g	in g	in %	in g	in %
36 mm	27,362	26,932	0,430	1,6	30,061	28,883	1,178	4,08	0,73	12,3
4-12-4-12-4	27,116	26,707	0,409	1,5	29,617	28,331	1,286	4,5	0,84	14,5
	28,260	27,832	0,428	1,5	30,008	28,748	1,260	4,4	0,81	13,8
	27,850	27,429	0,421	1,5	29,083	27,839	1,244	4,5	0,81	14,2
	28,754	28,283	0,471	1,7	29,413	28,035	1,378	4,9	0,94	16,4
	26,126	25,731	0,395	1,5	27,827	26,689	1,138	4,3	0,72	13,2
	28,237	27,802	0,435	1,6	28,619	27,409	1,210	4,4	0,78	13,9
	28,171	27,733	0,438	1,6	29,550	28,578	0,972	3,4	0,52	9,0
					29.925	28.605	1.320	4.6	0.87	14.9
					29.748	28.631	1.117	3.90	0.67	11.4
Mittel	27.7	27.3	0.4	1.6	29.4	28.2	1.2	4.3	0.77	13.4
Stabw	0.8	0.8	0.0	0.0	0.7	0.7	0.1	0.4	0.12	2.1
Median	28.0	27.6	0.4	1.6	29.6	28.5	12	44	0.79	13.9
mean	20,0	21,0	0,4	1,0	20,0	20,0	.,_	-,-	0,10	10,0
48 mm	39,910	39,307	0,603	1,5	46,074	43,060	3,014	7,0	2,36	26,8
4-18-4-18-4	41,324	40,721	0,603	1,5	44,527	42,670	1,857	4,4	1,21	13,8
	41,533	40,909	0.624	1.5	44.377	41.867	2.510	6.0	1.87	21.9
	40,749	40,158	0.591	1.5	45.531	43.980	1.551	3.5	0.88	9.8
	39,550	38,936	0.614	1.6	45,754	42,902	2.852	6.6	2.20	25.0
	40.853	40.248	0.605	1.5	43,955	42,153	1.802	4.3	1.16	13.5
	42 522	41 873	0.649	1.5	44 937	42 922	2 015	47	1.36	15.5
	40.854	40.242	0.612	1,5	42,993	41.309	1.684	4.1	1.06	12.5
				.,.	,	,	.,	.,	.,	,.
Mittel	40.9	40.3	0.6	1.5	44.8	42.6	2.2	5.1	1.51	17.3
Stabw	0.9	0.9	0.0	0.0	1.0	0.8	0.6	1.3	0.56	6.3
Median	40.9	40.2	0.6	1.5	44.7	42.8	1.9	4.5	1.29	14.7
52 mm	43 479	42 822	0.657	15	44 653	41 600	3 053	73	2 43	28.5
6-18-4-18-6	43 793	43 150	0.643	1,0	43,922	41 041	2 881	7.0	2,10	26,9
0.001.000	43.028	42 397	0,631	1,5	45.614	42 903	2 711	63	2.07	23.5
	40,020	40,883	0,607	1,5	44,323	41 635	2,711	6.5	2,07	24.2
	41,000	43 503	0,610	1,5	44,323	42 230	2,000	6,0	1 01	27,2
	44,242	43,333	0,049	1,5	44,770	42,233	2,007	5.4	1,51	18.0
	42,975	42,547	0,020	1,5	44,913	42,023	2,200	5,4	1,05	17.2
	42,103	41,044	0,021	1,5	44,209	42,151	2,110	5,0	1,49	17,2
	41,920	41,314	0,614	1,5	44,592	41,699	2,693	6,9	2,27	20,5
	-				42,03/	40,009	2,110	0,9	2,10	∠0,0 12.0
Mittal	40.0	40.0	0.0	4 5	43,304	41,704	1,000	4,0	1,00	12,3
Stabu	42,9	42,3	0,0	1,5	44,3	41,8	2,0	0,1	1,94	<u> </u>
Stabw	1,0	0,9	0,0	0,0	0,8	0,0	0,4	1,1	0,42	5,1
Median	43,0	42,4	0,6	1,5	44,5	41,7	2,7	6,4	2,07	23,9

Horotollor	6		Abstandbalta	-	Kunststoff / m	otollicobo Diff	ucionconorro			
neistellei	0		Abstandnaite	l.	Runsision / II	letallische Dil	usionssperre			
			Sekundardici	itstoil.	PU 00					
			IC	IN %	20					
					0				11 - 711	
	Lieferzustan	a			Gealtert				" <u>Z</u> "	F
	714	77.4		" II" A - 6	"M te"	"M tr"		0.775.0	Zubeladung	Feucht.
	IM	IM		Antangs-	IM	IM	B	" If"	durch	aufn.faktor
	entnommen	getrocknet	Beladung	beladung	entnommen	getrocknet	Beladung	Beladung	Alterung	1
	in g	in g	in g	in %	in g	in g	in g	in %	in g	in %
36 mm	35,795	34,483	1,312	3,8	21,368	20,523	0,845	4,12	0,11	3,2
4-12-4-12-4	32,494	31,317	1,177	3,8	37,851	35,395	2,456	6,9	1,19	20,4
	32,893	31,630	1,263	4,0	38,291	36,751	1,540	4,2	0,22	3,7
	43,930	42,308	1,622	3,8	24,019	22,487	1,532	6,8	0,72	19,6
	44,298	42,903	1,395	3,3	33,207	31,966	1,241	3,9	0,09	1,8
	43,249	41,895	1,354	3,2	37,874	36,535	1,339	3,7	0,03	0,5
	33,489	32,347	1,142	3,5	32,479	31,134	1,345	4,3	0,23	4,5
	37,016	35,829	1,187	3,3	30,966	29,925	1,041	3,5		
Mittel	37.9	36.6	1.3	3.6	32.0	30.6	1.4	4.7	0.37	7.7
Stabw	5.1	5.0	0.2	0.3	6.4	6.2	0.5	1.4	0.43	8.5
Median	36.4	35.2	1.3	3.6	32.8	31.6	1.3	4.2	0.22	3.7
48 mm	67,152	65,172	1,980	3,0	56,299	51,916	4,383	8,4	2,74	31,3
4-18-4-18-4	73,443	71,261	2,182	3,1	82,871	76,775	6,096	7,9	3,66	28,3
	66,788	64,651	2,137	3,3						
	70,307	68,173	2,134	3,1						
	66,290	64,179	2,111	3,3	63,835	61,314	2,521	4,1	0,58	5,6
	75,219	72,838	2,381	3,3	76,400	73,616	2,784	3,8	0,45	3,6
	74,942	72,637	2,305	3,2						
	75,990	73,713	2,277	3,1						
					59,106	56,782	2,324	4,1	0,52	5,5
					64,011	61,069	2,942	4,8	1,01	9,8
Mittel	71,3	69,1	2,2	3,2	67,1	63,6	3,5	5,5	1,49	14,0
Stabw	4,1	4,0	0,1	0,1	10,4	9,7	1,5	2,1	1,37	12,4
Median	71,9	69,7	2,2	3,2	63,9	61,2	2,9	4,5	0,79	7,7
52 mm	71,510	69,393	2,117	3,1	27,609	25,756	1,853	7,2	1,04	24,0
b-18-4-18-6	/4,789	/2,664	2,125	2,9	48,523	46,759	1,764	3,8	0,29	3,7
	64,242	62,163	2,079	3,3	52,311	49,766	2,545	5,1	0,98	11,7
	75,214	72,952	2,262	3,1	74,145	70,482	3,663	5,2	1,44	12,2
	72,034	69,783	2,251	3,2	67,524	64,802	2,722	4,2	0,68	6,3
	53,717	51,983	1,734	3,3	75,742	72,590	3,152	4,3	0,87	7,1
	73,273	71,044	2,229	3,1	38,930	37,332	1,598	4,3	0,42	6,7
	74,993	72,769	2,224	3,1	74,569	71,575	2,994	4,2	0,74	6,1
					49,026	46,598	2,428	5,2	0,96	12,2
					47,808	45,166	2,642	5,8	1,22	16,0
Mittel	70,0	67,8	2,1	3,1	55,6	53,1	2,5	4,9	0,87	10,6
Stabw	7,5	7,3	0,2	0,1	16,6	16,0	0,7	1,0	0,35	6,0
Median	72,7	70,4	2,2	3,1	50,7	48,3	2,6	4,7	0,91	9,4

Hersteller	7	7 Abstandhalter:		Kunststoff / metallische Diffusionssperre						
			Sekundärdich	ntstoff:	PU					
			Tc	in %	22					
	Lieferzustan	d			Gealtert				"7"	
				"Ti"	"m fe"	"m tr"			Zubeladung	Feucht
	тм	TM		Anfangs.	TM	TM	"R"	"Tf"	durch	aufn faktor
	entnommen	getrocknet	Beladung	beladung	entnommen	getrocknet	Beladung	Beladung	Alterung	I
	in a	in a	beladung in a	in %	in a	getiocknet	belauurig	in %	in a	in %
20	04.000	11 g	11 g	11 78	11 y	10.474	1.000	III 78	11 g	10.0
36 mm	24,988	24,519	0,469	1,9	20,563	19,474	1,089	5,59	0,71	18,2
4-12-4-12-4	24,060	23,561	0,499	2,1	17,316	16,458	0,858	5,2	0,54	16,3
	24,835	24,380	0,455	1,9	22,286	21,049	1,237	5,9	0,83	19,6
	24,058	23,615	0,443	1,9	16,054	15,288	0,766	5,0	0,47	15,3
	26,021	25,536	0,485	1,9	21,528	20,389	1,139	5,6	0,74	18,2
	25,582	25,071	0,511	2,0	15,055	14,242	0,813	5,7	0,54	18,8
	25,461	24,982	0,479	1,9	26,792	25,661	1,131	4,4	0,63	12,3
	25,381	24,910	0,471	1,9	23,836	22,779	1,057	4,6	0,62	13,5
					26,475	25,279	1,196	4,7	0,71	13,9
					13,922	12,945	0,977	7,55	0,73	28,0
Mittel	25.0	24.6	0.5	1.9	20.4	19.4	1.0	5.4	0.65	17.4
Stabw	0.7	0.7	0.0	0.1	4.6	4.5	0.2	0.9	0.11	4.5
Median	25.2	24.7	0.5	1.9	21.0	19.9	1.1	5.4	0.67	17.2
	,_	,.	0,0	.,•	,•	,.	.,.	•, .	0,01	,_
40 mm	40.697	41.045	0.740	1.0	26 120	24 512	1 607	4 7	1.02	14 5
40 11111	42,007	41,945	0,742	1,0	36,120	34,513	1,007	4,7	1,02	14,5
4-18-4-18-4	41,579	40,905	0,674	1,6	31,622	30,152	1,470	4,9	0,95	15,6
	38,897	38,225	0,672	1,8	27,113	25,887	1,226	4,7	0,78	14,9
	42,310	41,608	0,702	1,7	42,570	40,896	1,674	4,1	0,97	11,7
	43,833	43,105	0,728	1,7	25,910	24,643	1,267	5,1	0,85	16,9
	43,463	42,738	0,725	1,7	41,406	39,940	1,466	3,7	0,78	9,7
	42,109	41,417	0,692	1,7	44,862	42,873	1,989	4,6	1,26	14,4
	40,833	40,120	0,713	1,8	42,196	40,493	1,703	4,2	1,01	12,3
					43,241	41,174	2,067	5,0	1,36	16,3
					40,268	38,699	1,569	4,1	0,91	11,5
Mittel	42,0	41,3	0,7	1,7	37,5	35,9	1,6	4,5	0,99	13,8
Stabw	1.6	1.6	0.0	0.0	7.0	6.7	0.3	0.5	0.19	2.4
Median	42.2	41.5	0.7	1.7	40.8	39.3	1.6	4.6	0.96	14.5
	,_	,-	-,.	-,-	,.	,-	-,-	-,-	,	,-
52 mm	41 084	41 267	0.717	17	23 462	20.807	2 565	12.3	2 20	52.0
6-18-4-18-6	41,304	41,207	0,717	1,7	42 616	40 136	2,303	62	1 78	21.0
0-10-4-10-0	42,755	42,014	0,739	1,0	42,010	40,130	2,400	0,2	1,70	21,3
	43,205	42,515	0,690	1,0	44,209	42,232	2,057	4,9	1,32	15,4
	22,254	21,824	0,430	2,0	43,023	41,115	1,908	4,6	1,19	14,3
	43,043	42,288	0,755	1,8	36,058	33,652	2,406	7,1	1,82	26,7
	42,720	42,020	0,700	1,7	44,456	41,644	2,812	6,8	2,08	24,7
	39,615	38,914	0,701	1,8	36,502	34,441	2,061	6,0	1,46	20,9
	41,650	40,983	0,667	1,6	44,988	42,406	2,582	6,1	1,84	21,4
					45,326	42,745	2,581	6,0	1,83	21,2
					44,906	42,237	2,669	6,3	1,93	22,6
Mittel	39,7	39,0	0,7	1,7	40,6	38,2	2,4	6,6	1,75	24,1
Stabw	7,1	7,0	0,1	0,1	6,9	6,9	0,3	2,1	0,33	10,5
Median	42,4	41,6	0,7	1,7	43,7	41,4	2,5	6,1	1,83	21,7

Horotollor	0	8 Abstandhalter:		alter: Kunststoff / metallische Diffusionssperre						
neistellei	0		Abstandinate	l.	RUNSISION / II	letallische Dil	usionssperie			
			Sekundardici	itstoil.	PU					
			IC	IN %	22					
		•			0				11 - 711	
	Lieferzustan	a			Gealtert				" <u>Z</u> "	F
	714	77.4		" I I" A - 6	"M te"	"M tr"		0.775.0	Zubeladung	Feucht.
	IM	IM		Antangs-	IM	IM	.B.	" It"	durch	auth.taktor
	entnommen	getrocknet	Beladung	beladung	entnommen	getrocknet	Beladung	Beladung	Alterung	<u> </u>
	in g	in g	in g	in %	in g	in g	in g	in %	in g	in %
36 mm	18,816	18,306	0,510	2,8	12,846	11,847	0,999	8,43	0,64	28,6
4-12-4-12-4	11,404	11,022	0,382	3,5	20,759	19,465	1,294	6,6	0,71	19,2
	18,375	17,862	0,513	2,9	19,161	17,988	1,173	6,5	0,63	18,5
	17,222	16,753	0,469	2,8	18,962	17,766	1,196	6,7	0,66	19,6
	11,777	11,371	0,406	3,6	18,954	17,907	1,047	5,8	0,51	14,9
	18,171	17,667	0,504	2,9	19,356	18,157	1,199	6,6	0,65	18,9
	18,356	17,846	0,510	2,9	18,834	17,589	1,245	7,1	0,72	21,4
	17,733	17,238	0,495	2,9	13,770	12,516	1,254	10,0	0,88	36,9
					20,087	18,742	1,345	7,2	0,78	21,9
					19,463	18,219	1,244	6,83	0,70	20,1
Mittel	16,5	16,0	0,5	3,0	18,2	17,0	1,2	7,2	0,69	22,0
Stabw	3,1	3,0	0,1	0,3	2,7	2,6	0,1	1,2	0,10	6,3
Median	18,0	17,5	0,5	2,9	19,1	17,9	1,2	6,8	0,68	19,9
48 mm	30,249	29,548	0,701	2,4	13,035	11,556	1,479	12,8	1,17	52,4
4-18-4-18-4	21,305	20,705	0,600	2,9	32,246	29,971	2,275	7,6	1,48	25,5
	29,566	28,863	0,703	2,4	31,572	29,700	1,872	6,3	1,08	18,8
	29,049	28,371	0,678	2,4	22,811	20,590	2,221	10,8	1,67	42,0
	30,195	29,464	0,731	2,5	32,003	30,113	1,890	6,3	1,09	18,7
	27,014	26,378	0,636	2,4	33,391	31,132	2,259	7,3	1,43	23,7
	32,264	31,591	0,673	2,1	31,967	30,055	1,912	6,4	1,11	19,1
	11,699	11,227	0,472	4,2	45,716	43,490	2,226	5,1	1,07	12,7
					32,720	30,702	2,018	6,6	1,20	20,2
					13,059	11,718	1,341	11,4	1,03	45,4
Mittel	26,4	25,8	0,6	2,7	28,9	26,9	1,9	8,1	1,23	27,9
Stabw	6,8	6,7	0,1	0,7	10,0	9,7	0,3	2,6	0,22	13,6
Median	29,3	28,6	0,7	2,4	32,0	30,0	2,0	6,9	1,14	22,0
52 mm	18.812	18,241	0,571	3.1	33.298	30,693	2,605	8.5	1,82	30.6
6-18-4-18-6	28,451	27,772	0,679	2,4	33,135	30,204	2,931	9,7	2,16	36.8
	29.301	28,589	0.712	2.5	32.000	29.810	2,190	7.3	1.43	24.7
	27.033	26.387	0.646	2.4	32.202	30.313	1.889	6.2	1.12	19.0
	35.641	34.841	0.800	2.3	32,702	30,200	2.502	8.3	1.73	29.5
	27,569	26.872	0.697	2.6	32,616	29.971	2.645	8.8	1.88	32.3
	28,013	27,335	0.678	2.5	32,410	30,123	2,287	7.6	1,52	26.0
	28 485	27 802	0.683	2.5	31 722	29 469	2 253	7.6	1.50	26.2
	20,100	21,002	0,000	2,0	33 523	30,668	2,200	93	2.08	34.8
					20 591	19 128	1 463	7.6	0.98	26.2
Mittel	27 0	27.2	07	25	31 4	29.1	24	81	1.62	28.6
Stabw	4.6	4.5	0.1	0.3	3.8	3.5	<u>_</u> , ,	10	0.39	5.3
Median	28.2	27.6	0.7	2.5	32.5	30.2	24	8.0	1.63	27 9
moulan	20,2	21,0	0,1	2,5	52,5	JU,2	4,7	0,0	1,00	21,5

Hersteller	9	9 Abstandhalter:		Kunststoff / m	netallische Diff	usionssperre				
			Sekundärdich	ntstoff:	PU					
			Tc	in %	22					
	Lieferzustan	d			Gealtert				"Z"	
				"Tì"	"m fe"	"m tr"			Zubeladung	Feucht.
	TM	TM		Anfangs-	TM	TM	"B"	"Tf"	durch	aufn.faktor
	entnommen	getrocknet	Beladung	beladung	entnommen	getrocknet	Beladung	Beladung	Alterung	I
	in g	in g	in g	in %	in g	in g	in g	in %	in g	in %
36 mm	18,387	18,069	0,318	1,8	40,854	39,875	0,979	2,46	0,27	3,4
4-12-4-12-4	19,455	19,117	0,338	1,8	35,584	34,126	1,458	4,3	0,85	12,3
	19,051	18,696	0,355	1,9	21,206	20,393	0,813	4,0	0,45	10,9
	21,697	21,328	0,369	1,7	20,057	19,268	0,789	4,1	0,45	11,5
	20,715	20.357	0.358	1.8	21.925	21.141	0.784	3.7	0.41	9.6
	21,200	20.828	0.372	1.8	21.259	20.228	1.031	5.1	0.67	16.4
	28,223	27,736	0.487	1.8	21.602	20,799	0.803	3.9	0.43	10.3
	20.953	20.591	0.362	1.8	21.512	20.620	0.892	4.3	0.53	12.6
	,	,		,	21.836	21,136	0.700	3.3	0.32	7.6
					21.360	20.629	0.731	3.54	0.36	8.7
Mittel	21.2	20.8	0.4	18	24.7	23.8	0.9	39	0.47	10.3
Stabw	3.1	3.0	0,1	0.1	7.2	7.1	0.2	0.7	0,17	3.5
Median	20.8	20.5	0.4	1.8	21.6	20.7	0.8	3.9	0.44	10.6
Median	20,0	20,5	0,4	1,0	21,0	20,1	0,0	3,3	0,44	10,0
48 mm 4-18-4-18-4 Mittel Stabw	37,479 50,722 37,492 36,481 37,211 36,404 36,366 35,363 38,4 5,0	36,868 49,921 36,892 35,892 36,609 35,822 35,776 34,798 37,8 4,9	0,611 0,801 0,600 0,589 0,602 0,582 0,590 0,565 0,66 0,1	1,7 1,6 1,6 1,6 1,6 1,6 1,6 1,6 1,6 1 ,6 1 ,6 0 ,0	37,772 35,995 38,174 36,617 37,498 37,392 50,394 35,942 37,387 37,621 38,5 4,3	35,677 33,664 35,372 35,346 35,265 34,981 47,970 34,065 35,125 35,371 36,3 4,2	2,095 2,331 2,802 1,271 2,233 2,411 2,424 1,877 2,262 2,250 2,2 0,4	5,9 6,9 7,9 3,6 6,3 6,9 5,1 5,5 6,4 6,4 6,4 6,1 1,2	1,51 1,78 2,22 0,69 1,66 1,84 1,64 1,32 1,69 1,67 1,60 0,40	20,8 26,0 30,9 9,6 23,1 25,8 16,8 19,0 23,6 23,2 21,9 5,8
Median	36,8	36,3	0,6	1,6	37,4	35,3	2,3	6,3	1,66	23,1
52 mm	36,747	36,151	0,596	1,6	35,484	34,405	1,079	3,1	0,52	7,4
6-18-4-18-6	35,957	35,380	0,577	1,6	36,625	35,384	1,241	3,5	0,66	9,2
	36,843	36,249	0,594	1,6	36,306	34,917	1,389	4,0	0,82	11,5
	36,205	35,624	0,581	1,6	37,128	34,606	2,522	7,3	1,96	27,7
	35.518	34,940	0.578	1.7	49.319	46.457	2.862	6.2	2.10	22.2
	36,110	35,526	0,584	1,6	36,555	34,132	2,423	7,1	1,86	26,8
	37,240	36,643	0,597	1,6	49,950	47,000	2,950	6.3	2,18	22,8
	37,852	37.248	0.604	1.6	36.942	34.427	2.515	7.3	1.95	27.8
	,		-,	.,-		, .=.	_,	.,-	.,	
Mittel	36,6	36,0	0,6	1,6	39,8	37,7	2,1	5,6	1,51	19,4
Stabw	0,8	0,7	0,0	0,0	6,1	5,6	0,8	1,8	0,71	8,7
Median	36,5	35,9	0,6	1,6	36,8	34,8	2,5	6,2	1,91	22,5

Horstellor	10		Abstandbalte	r.	Kupetetoff / m	ootallische Diff				
riersteller			Sekundärdichtstoff		DI I		usionssperre			
			To	in %	22					
				111 70	22					
	Lioforzustan	d			Gealtert				"7"	
	Lieleizustall	u		"T)"	"m fe"	"m tr"				Feucht
	TM	TM		Anfangs-	TM	TM	"R"	"Tf"	durch	aufn faktor
	entnommen	getrocknet	Beladung	beladung	entnommen	getrocknet	Beladung	Beladuna		I
	in a	in a	in a	in %	in a	in a	in a	in %	in a	in %
36 mm	22.028	21.685	0.343	1.6	20.814	20.086	0.728	3.62	0.41	9.9
4-12-4-12-4	22,020	21,000	0.345	1,0	22,255	21 483	0,720	3.6	0.43	9.7
	21,663	21 313	0.350	1.6	22,200	21,522	0.820	3.8	0.47	10.8
	22,367	22 013	0.354	1,0	21,921	21,022	0.898	4.3	0.56	13.1
	21,851	21 510	0.341	1.6	21,625	20,862	0.763	3.7	0.43	10,1
	21,057	21,017	0,340	1,0	21,623	20,002	0,703	4.0	0,49	11.6
	21,634	21,017	0.341	1,0	22,090	21,202	0,888	4.2	0,40	12.7
	22 138	21,200	0.355	1,0	21 244	20,370	0.874	4.3	0.55	13.2
	22,100	21,100	0,000	.,0	22 203	21 251	0.952	4.5	0,60	14.1
					22,203	21,251	0,332	3 77	0,01	10.6
Mittal	21.0	21.5	03	1.6	21.8	21,210	0,100	4.0	0,40	11.6
Stabw	03	03	0,5	0.0	21,0	21,0	0,0	4,0	0,49	16
Median	21.9	21.6	0,0	1.6	22.0	21.1	0,1	3.9	0,07	11.2
Wethan	21,3	21,0	0,5	1,0	22,0	21,1	0,0	3,3	0,40	11,2
48 mm	37,099	36,542	0,557	1,5						
4-18-4-18-4	37,165	36,604	0,561	1,5						
	58,505	57,623	0,882	1,5	37,813	36,233	1,580	4,4	1,03	13,9
	36,104	35,566	0,538	1,5	37,340	35,830	1,510	4,2	0,97	13,2
	35,034	34,520	0,514	1,5	37,959	36,122	1,837	5,1	1,29	17,4
	35,978	35,437	0,541	1,5	37,600	35,945	1,655	4,6	1,11	15,1
	37,081	36,531	0,550	1,5	37,817	36,278	1,539	4,2	0,99	13,3
	36,671	36,115	0,556	1,5	37,663	36,010	1,653	4,6	1,11	15,0
					37,321	35,832	1,489	4,2	0,94	12,9
					37,574	36,069	1,505	4,2	0,96	13,0
Mittel	39,2	38,6	0,6	1,5	37,6	36,0	1,6	4,4	1,05	14,2
Stabw	7,8	7,7	0,1	0,0	0,2	0,2	0,1	0,3	0,12	1,6
Median	36,9	36,3	0,6	1,5	37,6	36,0	1,6	4,3	1,01	13,6
52 mm	37,196	36,649	0,547	1,5	37,677	35,356	2,321	6,6	1,78	24,6
ь-18-4-18-6	37,080	36,523	0,557	1,5	38,061	35,578	2,483	7,0	1,94	26,7
	35,900	35,368	0,532	1,5	38,109	36,041	2,068	5,7	1,52	20,6
	35,376	34,844	0,532	1,5	38,107	35,795	2,312	6,5	1,77	24,1
	35,468	34,934	0,534	1,5	36,616	34,532	2,084	6,0	1,56	22,0
	34,715	34,195	0,520	1,5	37,162	34,650	2,512	7,2	1,99	28,0
	36,110	35,566	0,544	1,5	37,480	35,305	2,175	6,2	1,64	22,7
	36,334	35,788	0,546	1,5	39,013	36,620	2,393	6,5	1,84	24,5
					38,099	35,860	2,239	6,2	1,69	23,1
N#*** - 1					38,259	35,495	2,764	7,8	2,22	30,6
Wittel	36,0	35,5	0,5	1,5	37,9	35,5	2,3	6,6	1,80	24,7
Stabw	υ,8	0,8	0,0	0,0	0,7	0,6	0,2	0,6	0,21	3,0
wedian	36,0	35,5	0,5	1,5	38,1	35,5	2,3	6,5	1,78	24,3

Sekundardchtstoft PS Image PS Image PS TC in % 22 in % <	Hersteller	11		Abstandhalte	r	Edelstahl					
Lieferzustand To in % 22 Control Contro Contro	Tiorotonor			Sekundärdich	ntstoff [.]	PS					
Lieferzustand TM Stable				Тс	in %	22					
Leferzustant Th Th Th Sealart Th											
Leferzusan/ enomen TM promen Gealteri TM (1) Tm promen TM promen Gealteri (1) TM promen C2 promental (1) Z2 promental (1) Z2 promental (1) <thz2 promental (1</thz2 											
TM TM TH Th Th Th Th Th Th Eaclarge Pathages TM TM Eaclarge Pathages TM TM Eaclarge Pathages Function Pathages		Lieferzustan	d			Gealtert				"Z"	
TM TM TM TP durfname path status pat					"Ti"	"m fe"	"m tr"			Zubeladung	Feucht.
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		TM	TM		Anfangs-	TM	TM	"B"	"Tf"	durch	aufn.faktor
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		entnommen	aetrocknet	Beladung	beladung	entnommen	aetrocknet	Beladung	Beladung	Alterung	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		in q	in g	in g	in %	in q	in q	in q	in %	ing	in %
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	36 mm	34,759	34.058	0.701	2.1	36,688	34,469	2.219	6.44	1.58	22.8
35.574 34.865 0.679 1.9 38.198 34.078 2.103 6.2 1.49 21.7 34.766 34.661 0.075 2.1 36.051 34.203 2.088 6.0 1.45 20.8 34.662 35.472 0.600 1.6 38.033 38.746 2.287 6.2 1.61 21.7 34.666 33.982 0.704 2.1 37.600 35.170 2.432 6.9 1.61 21.7 36.008 35.453 0.555 1.6 37.999 35.300 2.432 6.9 1.61 21.7 36.008 35.43 0.555 1.6 37.380 35.152 2.08 6.28 1.56 22.0 Mitel 35.4 34.8 0.7 1.9 37.0 34.9 2.2 6.3 1.57 22.2 Median 35.4 34.88 0.7 1.9 37.0 34.9 2.2 6.3 1.57 22.2 2.3 Med	4-12-4-12-4	35.872	35.304	0.568	1.6	38,995	36.456	2.539	7.0	1.87	25.4
35.262 34.641 0.621 1.8 36.641 34.503 2.088 6.0 1.46 20.8 34.786 34.081 0.705 2.1 35.375 34.206 2.169 6.3 1.54 22.3 34.686 33.982 0.704 2.1 37.602 35.170 2.432 6.9 1.78 25.2 36.008 35.453 0.555 1.6 37.900 35.302 2.639 7.5 1.99 27.9 Mittel 35.443 0.66 0.6 1.8 37.3 35.0 2.3 6.5 1.63 23.1 Stabw 0.6 0.6 0.1 0.2 1.1 0.9 0.2 0.5 0.19 2.3 Median 54.745 53.765 0.900 1.8 56.991 54.093 2.898 5.2 1.98 17.7 54.745 53.765 0.900 1.8 56.991 54.093 2.898 5.2 1.98 17.7 54.		35.574	34,895	0.679	1.9	36,198	34.078	2,120	6.2	1.49	21.7
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		35.262	34,641	0.621	1.8	36,681	34.593	2.088	6.0	1.45	20.8
36,052 36,472 0.800 1,6 39,033 38,746 2,287 6,2 1,61 21,7 34,686 33,382 0,704 2,1 37,602 35,170 2,432 6,9 1,73 25,2 36,008 35,453 0,555 1,6 37,999 33,320 2,639 7,5 1,99 27,9 Mittel 35,4 34,7 0,6 1,8 37,30 35,0 2,2 6,3 1,63 23,1 Mittel 35,4 34,8 0,7 1,9 37,0 34,9 2,2 6,3 1,57 22,2 Median 35,4 34,8 0,7 1,9 37,0 34,9 2,2 6,3 1,57 22,2 48 mm 54,766 53,662 0,800 1,8 56,91 54,003 2,898 5,4 2,02 18,3 418-4-18-4 54,766 53,662 0,804 1,5 57,003 53,701 3,302 6,1 2,43 2		34,786	34,081	0.705	2.1	36,375	34.206	2,169	6.3	1.54	22.3
34,686 33,982 0,704 2.1 37,602 35,170 2,432 6.9 1,78 25.2 36,008 35,453 0,555 1.6 37,959 35,320 2,639 7,5 1,99 27,9 Mittel 35,4 34,7 0,6 1.8 37,380 35,152 2,208 6,28 1,56 22,0 Median 35,4 34,8 0,7 1,9 37,00 34,9 2,2 6,3 1,57 22,2 48 mm 54,745 53,765 0,980 1.8 56,991 54,093 2,898 5,4 2,02 18,3 4-18-4-18-4 54,745 53,765 0,980 1.8 56,991 54,093 2,898 5,2 1,98 17,3 54,652 53,964 0,958 1.8 56,051 2,898 5,2 1,96 17,7 54,824 54,023 0,801 1,5 57,003 53,701 3,302 6,1 2,43 2,27,8 <t< td=""><td></td><td>36.052</td><td>35.472</td><td>0.580</td><td>1.6</td><td>39.033</td><td>36.746</td><td>2.287</td><td>6.2</td><td>1.61</td><td>21.7</td></t<>		36.052	35.472	0.580	1.6	39.033	36.746	2.287	6.2	1.61	21.7
36,008 35,463 0.555 1.6 37,969 35,200 2,839 7,5 1,99 27,9 Mittel 35,4 34,7 0,6 1,8 36,280 34,211 2,079 6,1 1,45 21,0 Mittel 35,4 34,7 0,6 0,1 0,2 1,1 0,9 0,2 0,5 0,19 2,3 Median 35,4 34,8 0,7 1,9 37,0 34,9 2,2 6,3 1,57 22,2 Median 35,4 34,8 0,7 1,9 37,0 34,9 2,2 6,3 1,57 22,2 48 mm 54,745 53,765 0,980 1,8 56,991 54,093 2,898 5,4 2,02 18,3 17,3 448 mm 54,745 53,670 0,980 1,8 56,711 53,000 2,811 5,2 1,94 17,6 54,443 53,671 0,72 1,4 57,708 53,3701 3,302		34,686	33,982	0.704	2.1	37,602	35,170	2,432	6.9	1.78	25.2
Mittel 35,4 34,7 0,6 1,8 37,3 35,50 2,208 6,28 1,66 22,0 Stabw 0,6 0,6 0,1 0,2 1,1 0,9 0,2 0,5 0,19 2,3 Median 35,4 34,8 0,7 1,9 37,0 34,9 2,2 6,3 1,63 22,1 48 mm 54,745 53,765 0.980 1,8 56,991 54,093 2,898 5,4 2,02 18,3 418-4.18-4 54,766 53,962 0.980 1,8 56,911 53,000 2,811 52,2 1,98 17,3 54,652 53,671 0.958 1,8 56,711 53,000 2,811 5,2 1,98 17,7 54,624 54,622 63,631 0.958 1,8 56,711 53,000 2,811 52,2 1,98 17,7 54,624 54,023 0.801 1,5 57,785 53,377 2,976 5,5 <th< td=""><td></td><td>36.008</td><td>35,453</td><td>0.555</td><td>1.6</td><td>37.959</td><td>35.320</td><td>2.639</td><td>7.5</td><td>1.99</td><td>27.9</td></th<>		36.008	35,453	0.555	1.6	37.959	35.320	2.639	7.5	1.99	27.9
Mittel 35,4 34,7 0,6 1,8 37,3 35,0 2,208 6,28 1,56 22,0 Mittel 35,4 34,7 0,6 1,8 37,3 35,0 2,3 6,5 1,83 22,1 Median 35,4 34,8 0,7 1,9 37,0 34,9 2,2 6,3 1,57 22,2 Median 35,4 34,8 0,7 1,9 37,0 34,9 2,2 6,3 1,57 22,2 Median 54,745 53,765 0,980 1,8 56,991 54,093 2,898 5,4 2,02 18,3 4:8+4.4 54,766 53,962 0,804 1,5 58,940 56,051 2,898 5,2 1,96 17,7 54,624 53,671 0,772 1,4 57,188 54,034 2,944 5,2 1,96 17,7 54,824 53,671 0,801 1,5 56,703 53,711 3,302 5,5 2,04		,	,	-,	7-	36,290	34.211	2.079	6.1	1.45	21.0
Mittel 35,4 34,7 0,6 1,8 37,3 35,0 2,3 6,5 1,63 22,1 Stabw 0,6 0,6 0,1 0,2 1,1 0,9 0,2 0,5 0,19 2,3 Median 35,4 34,8 0,7 1,9 37,0 34,9 2,2 6,3 1,57 22,2 48 mm 54,745 53,765 0,980 1,8 56,991 54,093 2,898 5,4 2,02 18,3 4:18-4-18-4 54,766 53,892 0,804 1,5 58,940 56,051 2,899 5,2 1,98 17,3 54,443 53,671 0,772 1,4 57,118 53,300 2,811 5,2 1,96 17,7 54,824 54,023 0,801 1,5 57,003 53,701 3,302 6,1 2,43 22,2 5,2 1,84 17,6 54,747 53,747 1,300 1,9 53,762 3,919 7,5 5,2 <td></td> <td></td> <td></td> <td></td> <td></td> <td>37.360</td> <td>35.152</td> <td>2.208</td> <td>6.28</td> <td>1.56</td> <td>22.0</td>						37.360	35.152	2.208	6.28	1.56	22.0
Stabw 0,6 0,6 0,1 0,2 1,1 0,9 0,2 0,5 0,19 2,3 Median 35,4 34,8 0,7 1,9 37,0 34,9 2,2 6,3 1,157 22,2 Median 54,745 53,765 0,980 1,8 56,091 54,093 2,898 5,4 2,02 18,3 48 mm 54,745 53,962 0,804 1,5 58,940 56,051 2,898 5,4 2,02 18,3 54,662 53,962 0,804 1,5 57,003 53,701 3,302 6,1 2,43 22,2 54,747 53,477 0,811 1,6 57,671 53,752 3,919 7,3 3,05 27,8 54,747 53,474 0,811 1,6 57,671 53,752 2,972 5,5 2,10 19,2 54,363 53,533 0,810 1,5 56,682 53,779 2,435 4,5 1,56 14,1	Mittel	35.4	34.7	0.6	1.8	37.3	35.0	2.3	6.5	1.63	23.1
Median 35,4 34,8 0,7 1,9 37,0 34,9 2,2 6,3 1,57 22,2 48 mm 54,745 53,765 0.980 1,8 56,991 54,093 2,898 5,4 2,02 18,3 418-4-18-4 54,765 53,962 0.804 1,5 58,940 56,051 2,898 5,2 1,98 17,3 54,652 53,694 0.9568 1,8 56,711 53,900 2,811 5,2 1,94 17,6 54,824 54,023 0,801 1,5 57,003 53,701 3,005 27,8 51,978 51,167 0,811 1,5 57,671 53,752 2,919 7,3 3,05 27,8 54,747 53,747 1,000 1,9 53,897 51,22 1,84 17,6 54,363 53,553 0,810 1,5 56,682 54,247 2,435 4,5 1,56 14,1 56,765 53,379 2,976	Stabw	0.6	0.6	0,1	0.2	1.1	0.9	0.2	0.5	0.19	2.3
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Median	35.4	34.8	0.7	1.9	37.0	34.9	2.2	6.3	1.57	22.2
48 mm 54,745 53,765 0,980 1.8 56,991 54,093 2,898 5,4 2,02 18,3 4-18-4-18-4 54,765 53,962 0,804 1,5 58,940 56,051 2,898 5,4 2,02 18,3 4-18-4-18-4 54,765 53,662 0,804 1,5 58,940 56,051 2,898 5,2 1,94 17,7 54,625 53,661 0,972 1,4 57,103 53,300 2,811 5,2 1,94 17,7 54,824 54,023 0,801 1,6 57,671 53,752 3,919 7,3 3,05 27,8 54,747 53,747 1,000 1,9 53,897 51,225 2,672 5,2 1,84 17,6 54,363 53,553 0,810 1,5 56,682 53,347 2,976 5,5 2,10 19,2 54,343 2,91 1,6 56,85 53,81 3,0 5,5 2,09 19,1		,-	,-	-,-	-,-	,-	,-	_,_	-,-	.,	,_
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$											
48 mm 54,745 53,765 0.980 1.8 56,991 54,093 2,898 5,4 2,02 18,3 4.18-4-18-4 54,765 53,962 0.804 1,5 58,940 56,051 2,893 5,2 1,98 17,3 54,652 53,694 0.958 1,8 56,711 53,900 2,811 5,2 1,94 17,6 54,624 54,023 0.801 1,5 57,003 53,701 3,302 6,1 2,433 22,2 51,978 51,167 0,811 1,6 57,671 53,752 3,919 7,3 3,05 27,8 54,343 53,553 0,810 1,5 56,685 53,779 2,976 5,5 2,10 19,2 54,363 53,3,4 0,9 1,6 56,88 53,8 3,0 5,5 2,04 18,8 Mittel 54,3 53,7 0,8 1,5 56,9 53,8 3,0 5,5 2,09 19,1 Stabw <td></td>											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	48 mm	54,745	53,765	0,980	1,8	56,991	54,093	2,898	5,4	2,02	18,3
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	4-18-4-18-4	54,766	53,962	0,804	1,5	58,940	56,051	2,889	5,2	1,98	17,3
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		54,652	53,694	0,958	1,8	56,711	53,900	2,811	5,2	1,94	17,6
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		54,443	53,671	0,772	1,4	57,188	54,344	2,844	5,2	1,96	17,7
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		54.824	54.023	0.801	1.5	57.003	53,701	3.302	6.1	2.43	22.2
54,747 53,747 1,000 1,9 53,897 51,225 2,672 5,2 1,84 17,6 54,363 53,553 0,810 1,5 56,682 54,247 2,435 4,5 1,56 14,1 56,755 53,779 2,976 5,5 2,10 19,2 56,255 53,345 2,910 5,5 2,04 18,8 Mittel 54,3 53,4 0,9 1,6 56,85 53,345 2,910 5,5 2,09 19,1 Stabw 1,0 0,9 0,1 0,2 1,3 1,2 0,4 0,7 0,40 3,7 Median 54,7 53,7 0,8 1,5 56,9 53,8 2,9 5,3 2,00 18,0 52 mm 55,026 54,207 0,819 1,5 56,013 53,312 2,701 5,1 1,77 16,4 6-18-4-18-6 56,228 55,404 0,824 1,5 57,298 53,883 3,41		51,978	51,167	0,811	1,6	57,671	53,752	3,919	7,3	3,05	27,8
54,363 53,553 0,810 1,5 56,682 54,247 2,435 4,5 1,56 14,1 1 53,553 0,810 1,5 56,755 53,779 2,976 5,5 2,10 19,2 1 54,33 53,4 0,9 1,6 56,255 53,345 2,910 5,5 2,04 18,8 Mittel 54,3 53,4 0,9 1,6 56,8 53,8 3,0 5,5 2,09 19,1 Stabw 1,0 0,9 0,1 0,2 1,3 1,2 0,4 0,7 0,40 3,7 Median 54,7 53,7 0,8 1,5 56,9 53,8 2,9 5,3 2,00 18,0 52 mm 55,026 54,207 0,819 1,5 56,013 53,312 2,701 5,1 1,77 16,4 6-18-4-18-6 56,228 55,404 0,824 1,5 57,298 53,883 3,415 6,3 2,47 <		54,747	53,747	1.000	1.9	53,897	51.225	2.672	5.2	1.84	17.6
Mittel 54,3 53,4 0,9 1,6 56,255 53,345 2,910 5,5 2,10 19,2 Stabw 1,0 0,9 0,1 0,2 1,3 1,2 0,4 0,7 0,40 3,7 Median 54,7 53,7 0,8 1,5 56,9 53,8 2,9 5,3 2,00 18,0 Stabw 1,0 0,9 0,1 0,2 1,3 1,2 0,4 0,7 0,40 3,7 Median 54,7 53,7 0,8 1,5 56,9 53,8 2,9 5,3 2,00 18,0 52 mm 55,026 54,207 0,819 1,5 56,013 53,312 2,701 5,1 1,77 16,4 6-18-4-18-6 56,228 55,404 0,824 1,5 57,298 53,883 3,415 6,3 2,47 22,7 54,856 53,859 1,007 1,9 56,627 53,864 2,903 5,4		54,363	53,553	0,810	1,5	56,682	54,247	2,435	4,5	1,56	14,1
Mittel 54,3 53,4 0,9 1,6 56,255 53,345 2,910 5,5 2,04 18,8 Stabw 1,0 0,9 0,1 0,2 1,3 1,2 0,4 0,7 0,40 3,7 Median 54,7 53,7 0,8 1,5 56,9 53,8 2,9 5,3 2,00 18,0 Stabw 1,0 0,9 0,1 0,2 1,3 1,2 0,4 0,7 0,40 3,7 Median 54,7 53,7 0,8 1,5 56,9 53,8 2,9 5,3 2,00 18,0 Stabw 0,7 0,819 1,5 56,013 53,312 2,701 5,1 1,77 16,4 6.18-4-18-6 56,228 55,404 0,824 1,5 57,298 53,883 3,415 6,3 2,47 22,7 54,856 53,849 1,007 1,9 56,627 53,864 2,903 5,4 1,96 18,0		, ,	,	,		56,755	53.779	2.976	5.5	2.10	19.2
Mittel 54,3 53,4 0,9 1,6 56,8 53,8 3,0 5,5 2,09 19,1 Stabw 1,0 0,9 0,1 0,2 1,3 1,2 0,4 0,7 0,40 3,7 Median 54,7 53,7 0,8 1,5 56,9 53,8 2,9 5,3 2,00 18,0 Stabw 54,7 53,7 0,8 1,5 56,9 53,8 2,9 5,3 2,00 18,0 Stabw 55,026 54,207 0,819 1,5 56,013 53,312 2,701 5,1 1,77 16,4 6-18-4-18-6 56,228 55,404 0,824 1,5 57,298 53,883 3,415 6,3 2,47 22,7 54,856 53,89 1,007 1,9 56,677 53,864 2,993 5,4 1,96 18,0 54,388 53,591 0,807 1,5 57,031 53,791 3,058 5,7 2,12						56,255	53,345	2,910	5,5	2,04	18,8
Stabw 1,0 0,9 0,1 0,2 1,3 1,2 0,4 0,7 0,40 3,7 Median 54,7 53,7 0,8 1,5 56,9 53,8 2,9 5,3 2,00 18,0 Stabw 54,7 53,7 0,8 1,5 56,9 53,8 2,9 5,3 2,00 18,0 Stabw 55,026 54,207 0,819 1,5 56,013 53,312 2,701 5,1 1,77 16,4 6-18-4-18-6 56,228 55,404 0,824 1,5 57,298 53,883 3,415 6,3 2,47 22,7 54,856 53,849 1,007 1,9 56,767 53,864 2,903 5,4 1,96 18,0 54,856 53,879 1,007 1,9 56,767 53,864 2,903 5,4 1,96 18,0 54,887 53,750 1,017 1,9 56,627 53,646 2,981 5,6 2,04 18,8 <th>Mittel</th> <th>54,3</th> <th>53,4</th> <th>0,9</th> <th>1,6</th> <th>56,8</th> <th>53,8</th> <th>3,0</th> <th>5,5</th> <th>2,09</th> <th>19,1</th>	Mittel	54,3	53,4	0,9	1,6	56,8	53,8	3,0	5,5	2,09	19,1
Median 54,7 53,7 0,8 1,5 56,9 53,8 2,9 5,3 2,00 18,0 52 mm 55,026 54,207 0,819 1,5 56,013 53,312 2,701 5,1 1,77 16,4 6-18-4-18-6 56,228 55,404 0,824 1,5 57,298 53,883 3,415 6,3 2,47 22,7 54,856 53,849 1,007 1,9 56,767 53,864 2,903 5,4 1,96 18,0 54,856 53,859 0,807 1,5 57,031 53,973 3,058 5,7 2,12 19,4 54,767 53,750 1,017 1,9 56,627 53,646 2,981 5,6 2,04 18,8 54,887 53,879 1,008 1,9 56,917 53,71 3,126 5,8 2,19 20,1 54,935 53,923 1,012 1,9 57,118 53,631 3,487 6,5 2,55 2,55 2,3	Stabw	1,0	0,9	0,1	0,2	1,3	1,2	0,4	0,7	0,40	3,7
52 mm 55,026 54,207 0,819 1,5 56,013 53,312 2,701 5,1 1,77 16,4 6-18-4-18-6 56,228 55,404 0,824 1,5 57,298 53,883 3,415 6,3 2,47 22,7 54,856 53,849 1,007 1,9 56,767 53,864 2,903 5,4 1,96 18,0 54,856 53,849 1,007 1,9 56,767 53,864 2,903 5,4 1,96 18,0 54,856 53,879 0,807 1,5 57,031 53,973 3,058 5,7 2,12 19,4 54,767 53,750 1,017 1,9 56,627 53,646 2,981 5,6 2,04 18,8 54,887 53,879 1,008 1,9 56,917 53,791 3,126 5,8 2,19 20,1 54,935 53,923 1,012 1,9 57,118 53,631 3,487 6,5 2,55 2,3,3	Median	54,7	53,7	0,8	1,5	56,9	53,8	2,9	5,3	2,00	18,0
Solution											· · · · ·
52 mm 55,026 54,207 0,819 1,5 56,013 53,312 2,701 5,1 1,77 16,4 6-18-4-18-6 56,228 55,404 0,824 1,5 57,298 53,883 3,415 6,3 2,47 22,7 54,856 53,849 1,007 1,9 56,677 53,864 2,903 5,4 1,96 18,0 54,856 53,849 1,007 1,9 56,677 53,864 2,903 5,4 1,96 18,0 54,856 53,849 1,007 1,9 56,627 53,646 2,903 5,4 1,96 18,0 54,857 53,750 1,017 1,9 56,627 53,646 2,981 5,6 2,04 18,8 54,867 53,879 1,008 1,9 56,917 53,791 3,126 5,8 2,19 20,1 54,935 53,923 1,012 1,9 57,118 53,631 3,487 6,5 2,55 23,3											
52 mm 55,026 54,207 0,819 1,5 56,013 53,312 2,701 5,1 1,77 16,4 6-18-4-18-6 56,228 55,404 0,824 1,5 57,298 53,883 3,415 6,3 2,47 22,7 54,856 53,849 1,007 1,9 56,767 53,864 2,903 5,4 1,96 18,0 54,856 53,591 0,807 1,5 57,031 53,973 3,058 5,7 2,12 19,4 54,767 53,750 1,017 1,9 56,627 53,646 2,981 5,6 2,04 18,8 54,867 53,750 1,017 1,9 56,627 53,646 2,981 5,6 2,04 18,8 54,867 53,879 1,008 1,9 56,917 53,791 3,126 5,8 2,19 20,1 54,935 53,923 1,012 1,9 57,118 53,631 3,487 6,5 2,55 2,33											
52 mm 55,026 54,207 0,819 1,5 56,013 53,312 2,701 5,1 1,77 16,4 6-18-4-18-6 56,228 55,404 0,824 1,5 57,298 53,883 3,415 6,3 2,47 22,7 54,856 53,849 1,007 1,9 56,767 53,864 2,903 5,4 1,96 18,0 54,856 53,591 0,807 1,5 57,031 53,973 3,058 5,7 2,12 19,4 54,767 53,750 1,017 1,9 56,627 53,646 2,981 5,6 2,04 18,8 54,877 53,750 1,017 1,9 56,917 53,791 3,126 5,8 2,19 20,1 54,877 53,923 1,012 1,9 57,118 53,631 3,487 6,5 2,55 23,3 54,817 53,765 1,052 2,0 57,111 53,644 3,467 6,5 2,53 23,3											
6-18-4-18-6 56,228 55,404 0,824 1,5 57,298 53,883 3,415 6,3 2,47 22,7 54,856 53,849 1,007 1,9 56,767 53,864 2,903 5,4 1,96 18,0 54,856 53,591 0,807 1,5 57,031 53,973 3,058 5,7 2,12 19,4 54,876 53,750 1,017 1,9 56,627 53,646 2,981 5,6 2,04 18,8 54,887 53,879 1,008 1,9 56,627 53,646 2,981 5,6 2,04 18,8 54,887 53,923 1,012 1,9 57,118 53,631 3,487 6,5 2,55 23,5 54,817 53,765 1,052 2,0 57,111 53,644 3,467 6,5 2,53 23,3 54,817 53,765 1,052 2,0 57,111 53,644 3,467 6,5 2,53 23,3 2,3 <	52 mm	55,026	54,207	0,819	1,5	56,013	53,312	2,701	5,1	1,77	16,4
54,856 53,849 1,007 1,9 56,767 53,864 2,903 5,4 1,96 18,0 54,398 53,591 0,807 1,5 57,031 53,973 3,058 5,7 2,12 19,4 54,398 53,591 0,807 1,5 57,031 53,973 3,058 5,7 2,12 19,4 54,767 53,750 1,017 1,9 56,627 53,646 2,981 5,6 2,04 18,8 54,887 53,879 1,008 1,9 56,917 53,791 3,126 5,8 2,19 20,1 54,935 53,923 1,012 1,9 57,118 53,631 3,487 6,5 2,55 23,5 54,817 53,765 1,052 2,0 57,111 53,644 3,467 6,5 2,53 23,3 54,817 53,765 1,052 2,0 57,111 53,644 3,467 6,5 2,53 23,3 54,817 53,765 <td< td=""><td>6-18-4-18-6</td><td>56,228</td><td>55,404</td><td>0,824</td><td>1,5</td><td>57,298</td><td>53,883</td><td>3,415</td><td>6,3</td><td>2,47</td><td>22,7</td></td<>	6-18-4-18-6	56,228	55,404	0,824	1,5	57,298	53,883	3,415	6,3	2,47	22,7
54,398 53,591 0,807 1,5 57,031 53,973 3,058 5,7 2,12 19,4 54,767 53,750 1,017 1,9 56,627 53,646 2,981 5,6 2,04 18,8 54,887 53,879 1,008 1,9 56,627 53,646 2,981 5,6 2,04 18,8 54,887 53,879 1,008 1,9 56,917 53,791 3,126 5,8 2,19 20,1 54,935 53,923 1,012 1,9 57,118 53,631 3,487 6,5 2,55 23,5 54,817 53,765 1,052 2,0 57,111 53,644 3,467 6,5 2,53 23,3 54,817 53,765 1,052 2,0 57,111 53,644 3,467 6,5 2,53 23,3 54,91 53,765 1,052 2,0 57,111 53,644 3,467 6,5 2,53 2,33 57 54,90 54,90		54,856	53,849	1,007	1,9	56,767	53,864	2,903	5,4	1,96	18,0
54,767 53,750 1,017 1,9 56,627 53,646 2,981 5,6 2,04 18,8 54,887 53,879 1,008 1,9 56,917 53,791 3,126 5,8 2,19 20,1 54,887 53,879 1,008 1,9 57,118 53,631 3,487 6,5 2,55 23,5 54,935 53,923 1,012 1,9 57,118 53,631 3,487 6,5 2,55 23,5 54,817 53,765 1,052 2,0 57,111 53,644 3,467 6,5 2,53 23,3 6 53,863 54,016 2,324 4,3 1,38 12,6 6 57,380 54,08 3,172 5.9 2,23 20,3 Mittel 55,0 54,0 0,9 1,7 56,9 53,8 3,1 5,7 2,12 19,5 Stabw 0,5 0,6 0,1 0,2 0,4 0,3 0,4 0,7		54,398	53,591	0,807	1,5	57,031	53,973	3,058	5,7	2,12	19,4
54,887 53,879 1,008 1,9 56,917 53,791 3,126 5,8 2,19 20,1 54,935 53,923 1,012 1,9 57,118 53,631 3,487 6,5 2,55 23,5 54,817 53,765 1,052 2,0 57,111 53,644 3,467 6,5 2,53 23,3		54,767	53,750	1,017	1,9	56,627	53,646	2,981	5,6	2,04	18,8
54,935 53,923 1,012 1,9 57,118 53,631 3,487 6,5 2,55 23,5 54,817 53,765 1,052 2,0 57,111 53,644 3,467 6,5 2,53 23,3 54,817 53,765 1,052 2,0 57,111 53,644 3,467 6,5 2,53 23,3 6 53,817 53,765 1,052 2,0 57,111 53,644 3,467 6,5 2,53 23,3 6 53,817 53,765 1,052 2,0 57,111 53,644 3,467 6,5 2,53 23,3 6 57,380 54,016 2,324 4,3 1,38 12,6 7 59 2,23 20,3 3,172 5,9 2,23 20,3 8 1,7 56,9 53,8 3,1 5,7 2,12 19,5 5 5,0 0,6 0,1 0,2 0,4 0,3 0,4 0,7 0,36		54,887	53,879	1,008	1,9	56,917	53,791	3,126	5,8	2,19	20,1
54,817 53,765 1,052 2,0 57,111 53,644 3,467 6,5 2,53 23,3 L 56,340 56,340 54,016 2,324 4,3 1,38 12,6 Mittel 55,0 54,0 0,9 1,7 56,9 54,208 3,172 5,9 2,23 20,3 Stabw 0,5 0,6 0,1 0,2 0,4 0,3 0,4 0,7 0,36 3,3 Median 54,9 53,9 1,0 1,9 57,0 53,8 3,1 5,7 2,15 19,7		54,935	53,923	1,012	1,9	57,118	53,631	3,487	6,5	2,55	23,5
Image: Note of the state of the st		54,817	53,765	1,052	2,0	57,111	53,644	3,467	6,5	2,53	23,3
Image: Marcine State Image: State State <ths< td=""><td></td><td></td><td></td><td></td><td></td><td>56,340</td><td>54,016</td><td>2,324</td><td>4,3</td><td>1,38</td><td>12,6</td></ths<>						56,340	54,016	2,324	4,3	1,38	12,6
Mittel 55,0 54,0 0,9 1,7 56,9 53,8 3,1 5,7 2,12 19,5 Stabw 0,5 0,6 0,1 0,2 0,4 0,3 0,4 0,7 0,36 3,3 Median 54,9 53,9 1,0 1,9 57,0 53,8 3,1 5,7 2,15 19,7						57,380	54,208	3,172	5,9	2,23	20,3
Stabw 0,5 0,6 0,1 0,2 0,4 0,3 0,4 0,7 0,36 3,3 Median 54,9 53,9 1,0 1,9 57,0 53,8 3,1 5,7 2,15 19,7	Mittel	55,0	54,0	0,9	1,7	56,9	53,8	3,1	5,7	2,12	19,5
Median 54,9 53,9 1,0 1,9 57,0 53,8 3,1 5,7 2,15 19,7	Stabw	0,5	0,6	0,1	0,2	0,4	0,3	0,4	0,7	0,36	3,3
	Median	54,9	53,9	1,0	1,9	57,0	53,8	3,1	5,7	2,15	19,7

Hersteller	12		Abstandhalte	r:	Kunststoff / m	/ metallische Diffusionssperre				
			Sekundärdich	tstoff:	PU					
			Tc	in %	22					
	Lieferzustan	d			Gealtert				"Z"	
				"Tì"	"m fe"	"m tr"			Zubeladung	Feucht.
	TM	TM		Anfangs-	TM	TM	"B"	"Tf"	durch	aufn.faktor
	entnommen	getrocknet	Beladung	beladung	entnommen	getrocknet	Beladung	Beladung	Alterung	I
	in g	in g	in g	in %	in g	in g	in g	in %	in g	in %
36 mm	47,040	45,627	1,413	3,1	33,149	32,195	0,954	3,0		
4-12-4-12-4	47,460	46,007	1,453	3,2	32,080	30,826	1,254	4,1	0,27	4,7
	13,925	13,236	0,689		24,565	23,621	0,944	4,0	0,19	4,3
	32,723	31,501	1,222	3,9	25,253	24,273	0,980	4,0	0,21	4,5
	28,195	27,254	0,941	3,5	28,853	27,407	1,446	5,3	0,57	11,1
	37,086	35,987	1,099	3,1	15,856	15,348	0,508	3,3	0,02	0,7
	33,087	32,189	0,898	2,8	14,007	13,539	0,468	3,5	0,04	1,4
	38,352	37,282	1,070	2,9	46,396	44,835	1,561	3,5	0,13	1,6
					45,926	44,424	1,502	3,4	0,09	1,0
					15,149	14,657	0,492	3,4	0,03	0,9
Mittel	34,7	33,6	1,1	3,2	28,1	27,1	1,0	3,7	0,17	3,4
Stabw	10,8	10,6	0,3	0,4	11,7	11,3	0,4	0,7	0,17	3,3
Median	35,1	34,1	1,1	3,1	27,1	25,8	1,0	3,5	0,13	1,6
48 mm	72.362	70.606	1.756	2.5	41.609	40.211	1.398	3.5	0.35	4.5
4-18-4-18-4	43.086	41,940	1,146	2.7	71.800	69.197	2.603	3.8	0.81	6.0
	62,477	60.874	1,603	2.6	50,190	48,779	1.411	2.9	0.14	1.5
	39,852	38 851	1,000	2.6	54 003	52 444	1,559	3.0	0.20	1.9
	54 970	53 620	1,350	2.5	72 708	70.637	2 071	2.9	0.24	1.7
	58,855	57 291	1,564	27	66 477	64 497	1,980	3.1	0.30	2.4
	50,585	49.346	1,001	2.5	54 531	52,865	1,666	3.2	0.29	2.9
	51 833	50 521	1,200	2,6	56 248	54 658	1,590	2.9	0,20	1.6
	01,000	00,021	1,012	2,0	72,836	70 841	1 995	2.8	0.15	1 1
					63,942	62 060	1,882	3.0	0.27	22
Mittel	54.3	52.9	14	2.6	60.4	58.6	1.8	3.1	0.29	2.6
Stabw	10.5	10.2	03	0.1	10.7	10.4	0.4	0.3	0,19	1.5
Median	53.4	52.1	1.3	2.6	60,1	58.4	1.8	3.0	0.25	2.1
							,-	- / -		
52 mm	49,198	47.782	1.416	3.0	50.547	49.056	1.491	3.0	0.19	2.0
6-18-4-18-6	53.802	52.303	1.499	2.9	63.076	61.088	1.988	3.3	0.37	3.2
	72,636	70.834	1.802	2.5	35.666	34.806	0.860	2.5	- / -	- /
	60,862	59,300	1,562	2.6	28,348	27,562	0,786	2.9	0.06	1 1
	56,510	55,220	1,002	2.3	72 461	70,283	2 178	3.1	0.32	2.3
	38,986	37,931	1,055	2.8	32,489	29,301	3,188	10.9	2.41	42.6
	62.379	60.807	1.572	2.6	71.870	69.786	2.084	3.0	0.24	1.8
	72 149	70,428	1,721	2 4	51,771	49,852	1,919	3.8	0.60	6.2
	,	. 0, 120	.,/21	_, ··	53 190	50,636	2 554	5.0	1 22	12.4
			-		58 415	56 026	2,389	4.3	0.91	8.4
Mittel	58.3	56.8	15	26	51.8	49.8	1.9	4 2	0,70	8.9
Stabw	11.3	11.1	0.2	0.2	15.6	15.4	0.7	2.5	0,74	13.2
Median	58.7	57.3	1.5	2.6	52.5	50.2	2.0	3.2	0.37	3.2
			-,•	_,•	,-		_, v	-,-	2,01	-,-

Aufbau 4-12-4-12-4 und 6-18-4-18-6: Die gelb markierten Werte für Zubeladung und I-Faktor würde man u.U. bei einer MIG-Prüfung gemäß EN 1279 nicht in der Auswertung berücksichtigen. Eventuell war einer der SZR während der Klimabelastung praktisch offen (hohe Feuchtigkeitsaufnahme) und hat dadurch den anderen SZR entlastet (geringe Feuchtigkeitsaufnahme). Das lässt sich aber im Detail nicht nachweisen. Daher wurden diese Werte in der Auswertung (Graphen in Kapitel 1) belassen.

Hersteller	13		Abstandhalte	r:	Runstston / metallische Dinusionssperre					
			Sekundärdich	ntstoff:	PS					
			Тс	in %	20					
	Lieferzustan	d			Gealtert				"Z"	
				"Ti"	"m fe"	"m tr"			Zubeladung	Feucht.
	TM	TM		Anfangs-	TM	TM	"B"	"Tf"	durch	aufn.faktor
	entnommen	getrocknet	Beladung	beladung	entnommen	getrocknet	Beladung	Beladung	Alterung	I
	in g	in g	in g	in %	in g	in g	in g	in %	in g	in %
36 mm	23,794	23,281	0,513	2,2	21,708	20,198	1,510	7,48	1,09	30,0
4-12-4-12-4	23,960	23,487	0,473	2,0	30,765	26,602	4,163	15,6	3,61	75,7
	24,183	23,652	0,531	2,2	16,077	14,812	1,265	8,5	0,95	36,0
					23,036	19,482	3,554	18,2	3,15	90,2
	25,140	24,624	0,516	2,1	10,612	9,746	0,866	8,9	0,66	37,9
	24,581	24,070	0,511	2,1	19,496	15,934	3,562	22,4	3,23	113,2
	23,902	23,436	0,466	2,0	27,055	23,051	4,004	17,4	3,52	85,3
	25,832	25,323	0,509	2,0	13,943	12,060	1,883	15,6	1,63	75,5
					19,433	18,004	1,429	7,9	1,05	32,6
					17,948	16,596	1,352	8,15	1,00	33,8
Mittel	24,5	24,0	0,5	2,1	20,0	17,6	2,4	13,0	1,99	61,0
Stabw	0,8	0,7	0,0	0,1	6,0	5,0	1,3	5,4	1,22	30,3
Median	24,2	23,7	0,5	2,1	19,5	17,3	1,7	12,2	1,36	56,7
48 mm	38,752	38,035	0,717	1,9	47,978	41,075	6,903	16,8	6,13	82,4
4-18-4-18-4	36,909	36,225	0,684	1,9	22,622	18,850	3,772	20,0	3,42	100,1
	35,300	34,645	0,655	1,9	44,072	36,068	8,004	22,2	7,32	112,1
	46.389	45.546	0.843	1.9	53.611	44.132	9.479	21.5	8.65	108.2
					40,188	34.270	5.918	17.3	5.27	84.9
	46.010	45,179	0.831	1.8	48,553	39.613	8,940	22.6	8.19	114.2
	37,980	37 281	0.699	1.9	56,317	46,339	9 978	21.5	9 10	108.5
	30,688	30.090	0.598	2.0	35.357	27.921	7,436	26.6	6.91	136.6
		,	-,	_,.	52 563	42 545	10.018	23.5	9.21	119.6
					48,984	40 440	8 544	21.1	7 78	106.2
Mittel	38.9	38.1	07	19	45.0	37.1	79	21.3	7 20	107.3
Stabw	5.7	5.6	0,1	0.0	10 1	83	2.0	29	1 84	15.8
Median	38.0	37.3	0.7	1.9	48.3	40.0	8.3	21.5	7 55	108.3
mean	00,0	01,0	0,1	1,0	-10,0	40,0	0,0	21,0	1,00	100,0
52 mm	37 910	37 243	0.667	1.8	50.872	42 080	8 792	20.9	8.00	104.9
6-18-4-18-6	46 242	45,388	0.854	1,0	48 107	42 974	5 133	11.9	4 33	55.6
0.01.00	38 207	37 515	0,692	1.8	53 392	43 932	9,460	21.5	8.64	108.5
	31,846	31 263	0,583	1,0	50,089	41 160	8 929	21,3	8 16	100,5
	37 745	37,205	0,303	2.0	52,640	44 898	7 742	17.2	6.90	84.8
	40 343	39,605	0,723	1 0	40 188	33 078	7 110	21.5	6.49	108.2
	36 415	35,727	0,730	1.0	53 310	43 397	9.922	21,5	9,43	115.8
	29 120	27 422	0,000	1,5	42 412	24 701	9,322	22,5	9,11	129.2
	30,130	51,400	0,097	1,9	40.035	32 530	7.505	23,1	6.80	116.0
					40,033	37,030	8 104	23,1	7.49	10,9
Mittal	20.4	27.6	0.7	10	40,107	30.7	0,194	21,0	7,40	100,9
Stabu	38,4	31,0	0,7	1,9	47,8	39,7	ð, 1 1 4	20,7	1,41	104,1
Madian	4,0	3,9	0,1	1.0	J,∠ 40.4	4,1	1,4	3,1	1,30	20,3
wedian	38,0	31,3	0,7	1,9	49,1	41,0	8,5	21,0	1,14	108,7

Horstellor	11	14 Abstandhalter:		-	Kunststoff / metallische Diffusionssperre					
nersteller	14		Abstanunaite	I.	Runsision / II	letailische Dii	usionssperre			
			Sekundardich	itstoil.	P0					
			IC	IN %	22					
	l isfermunter	-1			O a alta at				"7"	
	Lielerzustan	a		077:0	Geattert	"m (-"			Zubolodung	Fought
	TM	TNA		11 A ofen de			"D"	""""	Zubeladung	Feucht.
	I IVI	I IVI	Dalashuas	Aniangs-			Daladuma	IT Delesione	duich	aumiaktor
	entnommen	getrocknet	Beladung	beladung	entnommen	getrocknet	Beladung	Beladung	Alterung	I
	in g	In g	in g	In %	in g	in g	In g	In %	in g	in %
36 mm	23,319	22,884	0,435	1,9	21,222	20,526	0,696	3,39	0,27	6,6
4-12-4-12-4	23,532	23,106	0,426	1,8	19,603	18,815	0,788	4,2	0,40	10,6
	10,280	10,040	0,240	2,4	13,683	12,985	0,698	5,4	0,43	16,6
	10,233	9,996	0,237	2,4	23,870	23,106	0,764	3,3	0,29	6,2
	17,942	17,580	0,362	2,1	24,972	24,185	0,787	3,3	0,29	5,9
	24,032	23,582	0,450	1,9	21,297	20,554	0,743	3,6	0,32	7,7
	23,563	23,124	0,439	1,9	20,589	19,860	0,729	3,7	0,32	8,0
	16,767	16,405	0,362	2,2	24,499	23,732	0,767	3,2	0,28	5,8
					24,089	23,302	0,787	3,4	0,30	6,5
					24,030	23,228	0,802	3,45	0,32	6,9
Mittel	18,7	18,3	0,4	2,1	21,8	21,0	0,8	3,7	0,32	8,1
Stabw	5,9	5,8	0,1	0,2	3,4	3,4	0,0	0,7	0,05	3,3
Median	20,6	20,2	0,4	2,0	22,6	21,8	0,8	3,4	0,31	6,8
10	10 700	10.105	0.070		10.000					
48 mm	19,798	19,425	0,373	1,9	42,098	40,144	1,954	4,9	1,25	15,4
4-18-4-18-4	27,125	26,631	0,494	1,9	42,433	40,695	1,738	4,3	1,03	12,4
	39,757	39,119	0,638	1,6	42,180	40,215	1,965	4,9	1,26	15,5
	41,330	40,668	0,662	1,6	42,388	40,544	1,844	4,5	1,13	13,8
	40,590	39,941	0,649	1,6	40,626	38,810	1,816	4,7	1,14	14,5
	40,904	40,245	0,659	1,6	41,225	39,431	1,794	4,5	1,10	13,8
	26,406	25,945	0,461	1,8	19,990	18,325	1,665	9,1	1,34	36,2
	16,733	16,416	0,317	1,9	40,929	39,234	1,695	4,3	1,01	12,7
					26,383	24,839	1,544	6,2	1,11	22,1
					49,351	47,405	1,946	4,1	1,12	11,6
Mittel	31,6	31,0	0,5	1,8	38,8	37,0	1,8	5,2	1,15	16,8
Stabw	10,3	10,1	0,1	0,1	8,7	8,6	0,1	1,5	0,11	7,4
Median	33,4	32,9	0,6	1,7	41,7	39,8	1,8	4,6	1,13	14,1
52 mm	39,963	39,332	0,631	1,6	25,681	23,856	1,825	7,7	1,42	29,3
0-18-4-18-6	37,285	30,038	0,647	1,8	41,905	39,185	2,780	7,1	2,12	20,0
	40,242	39,598	0,644	1,6	39,743	37,607	2,136	5,7	1,50	19,6
	37,701	37,093	0,608	1,6	24,987	23,449	1,538	6,6	1,14	24,0
	29,426	28,924	0,502	1,/	21,376	19,859	1,517	7,6	1,18	29,3
	39,950	39,312	0,638	1,6	24,608	22,978	1,630	/,1	1,24	26,6
	35,911	35,323	0,588	1,7	41,593	39,188	2,405	6,1	1,74	21,9
	24,865	24,404	0,461	1,9	39,005	37,232	1,773	4,8	1,14	15,1
					25,146	23,531	1,615	6,9	1,22	25,5
					28,323	26,763	1,560	5,8	1,11	20,4
Mittel	35,7	35,1	0,6	1,7	31,2	29,4	1,9	6,5	1,38	23,8
Stabw	5,6	5,5	0,1	0,1	8,2	7,9	0,4	0,9	0,33	4,6
Median	37,5	36,9	0,6	1,7	27,0	25,3	1,7	6,7	1,23	24,7

Hersteller	15		Abstandhalter:		Kunststoff / metallische Diffusionssperre					
			Sekundärdich	ntstoff:	PU					
			Тс	in %	22					
	Lieferzustan	d			Gealtert				"Z"	
				"Tì"	"m fe"	"m tr"			Zubeladung	Feucht.
	TM	TM		Anfangs-	TM	TM	"B"	"Tf"	durch	aufn.faktor
	entnommen	getrocknet	Beladung	beladung	entnommen	getrocknet	Beladung	Beladung	Alterung	I
	in g	in g	in g	in %	in g	in g	in g	in %	in g	in %
36 mm	16,497	16,152	0,345	2,1	21,063	20,247	0,816	4,03	0,38	9,5
4-12-4-12-4	19,820	19,430	0,390	2,0	20,570	19,899	0,671	3,4	0,24	6,2
	16,474	16,136	0,338	2,1	21,263	20,431	0,832	4,1	0,39	9,7
	18,007	17,638	0,369	2,1	20,611	19,880	0,731	3,7	0,30	7,7
	19,908	19,507	0,401	2,1	21,195	20,499	0,696	3,4	0,26	6,3
	17,949	17,583	0,366	2,1	16,856	16,284	0,572	3,5	0,22	6,9
	17.901	17.527	0.374	2.1	20.909	20.111	0.798	4.0	0.37	9.2
	9.795	9.552	0.243	2.5	14.039	13.419	0.620	4.6	0.33	12.5
	,	,	,	,	21,198	20.244	0.954	4.7	0.52	12.9
					21.116	20.380	0.736	3.61	0.30	7.4
Mittel	17.0	16.7	04	21	19.9	19.1	0.7	39	0.33	8.8
Stabw	3.2	3.1	0,0	0.2	2.4	2.4	0,1	0.5	0.09	2.4
Median	17.9	17.6	0.4	21	21.0	20.2	0.7	3.8	0.32	8.5
meanan	17,5	17,0	0,4	2,1	21,0	20,2	0,7	3,0	0,52	0,0
48 mm	44,280	43,481	0.799	1.8	22,713	21.714	0.999	4.6	0.57	13.1
4-18-4-18-4	29.228	28 651	0.577	2.0	44 675	43 249	1 426	3.3	0.57	6.6
	20,881	20 439	0.442	22	44 092	42 608	1 484	3.5	0.64	7.6
	44 304	42 462	1 842	_,_	44 547	43 146	1 401	3.2	0.55	6.4
	43 422	42 617	0.805	1 9	44 973	43 445	1,528	3.5	0.67	77
	24 101	23 606	0,005	21	23 926	22 734	1 192	5,3	0.74	16.3
	44,160	43 330	0,930	1.0	24,213	22,701	1,102	6.6	1.05	23.2
	43 048	42 257	0,000	1,0	22,213	21 313	1,001	6.0	0.86	20,2
	+0,0+0	42,201	0,751	1,5	44 906	42 101	1,270	4.2	0,00	11.0
					24 583	43,101	1,795	4,2	0,95	10.6
Mittal	26.7	25.0	0.0	2.0	24,363	23,213	1,370	5,9	0,91	19,0
Stobur	30,7	35,9	0,8	2,0	34,1	32,7	1,4	4,0	0,75	13,2
Stabw	10,2	9,9	0,4	0,1	11,1	11,0	0,2	1,3	0,10	0,3
wedian	43,2	42,4	0,0	1,9	34,3	32,9	1,4	4,4	0,71	12,0
				2.0						
				4.3						
				.,=						
52 mm	43 859	43 022	0.837	19	44 935	43 218	1 717	4.0	0.87	10.1
6-18-4-18-6	43,790	42,994	0.796	1,9	39.004	37.505	1,499	4.0	0.77	10.2
	43 743	42 883	0,860	2.0	22,537	21,066	1 471	7.0	1.06	25.1
	44 193	43 421	0,000	1.8	44 160	42 652	1,508	3.5	0.68	79
	44,133	44 115	0,772	1,0	44,100	43 248	1,500	3.0	0,00	9.8
	43 730	42 913	0,702	1,0	44,878	43 268	1,000	3,3	0,05	8.8
	22 073	21 605	0.468	22	44 075	42 297	1 778	4.2	0.95	11.2
	22,013	21,000	0,400	2,2	44,073	42,231	1,770	3.5	0,33	77
	22,041	22,000	0,492	۷,۷	44,791	12 020	1,017	3,0	0,07	1,1
	-		-		44,431 20,222	42,020	1,000	5,7	0,77	0,9
Mittal	20.6	27.0	0.7	2.0	23,332	21,941	1,391	5,0	0,00	10,1
Stabu	38,0	31,9	0,7	2,0	40,3	30,1 70	1,0	4,3	0,82	11,5
Madia	10,0	9,0	0,2	0,2	1,9	1,9	0,1	1,0	0,12	5,∠
wealan	43,8	43,0	0,8	1,9	44,3	42,1	1,6	3,9	0,81	9,9

11	10		AL		E DECELL					
Hersteller	16		Abstandnaite	r:	Edelstani					
			Sekundardich	itstoff:	PU					
			Тс	in %	20					
	Lieferzustan	d			Gealtert				"Z"	
				"Tì"	"m fe"	"m tr"			Zubeladung	Feucht.
	TM	TM		Anfangs-	TM	TM	"B"	"Tf"	durch	aufn.faktor
	entnommen	getrocknet	Beladung	beladung	entnommen	getrocknet	Beladung	Beladung	Alterung	I
	in g	in g	in g	in %	in g	in g	in g	in %	in g	in %
36 mm	34.064	33.637	0.427	1.3	36.240	34.255	1.985	5.79	1.52	23.8
4-12-4-12-4	34.319	33,899	0.420	1.2	,					
	34 616	34 138	0.478	14	34 741	33 812	0.929	27	0.47	7.5
	34 494	34 022	0 472	1.4	35,302	34 067	1 235	3.6	0.77	12.2
	34.056	33,625	0,431	13	35,882	34 495	1 387	4.0	0.92	14.3
	30.278	20,872	0,406	1,0	36,450	34 515	1,007	5.6	1.48	22.0
	24 701	23,072	0,400	1,4	34,049	24,004	0.044	3,0	0.49	7.6
	34,791	34,275	0,516	1,5	34,940	34,004	0,944	2,0	0,40	10.8
	34,003	34,321	0,462	1,4	35,740	34,028	1,720	5,1	1,20	19,6
					34,722	33,701	1,021	3,0	0,56	9,0
					41,595	33,744	7,851	23,27		
Mittel	33,9	33,5	0,5	1,4	36,2	34,1	2,1	6,2	0,93	14,6
Stabw	1,5	1,5	0,0	0,1	2,1	0,3	2,2	6,5	0,43	6,8
Median	34,4	34,0	0,5	1,4	35,7	34,0	1,4	4,0	0,85	13,2
48 mm	54,221	53,486	0,735	1,4	55,752	54,103	1,649	3,0	0,93	9,2
4-18-4-18-4	53,753	53,048	0,705	1,3	56,489	54,595	1,894	3,5	1,16	11,4
	53,239	52,554	0,685	1,3	55,632	54,093	1,539	2,8	0,82	8,1
	53,394	52,728	0,666	1,3	55,607	53,798	1,809	3,4	1,09	10,9
	54,183	53,437	0.746	1.4	55.122	53.620	1.502	2.8	0.79	7.8
	53.844	53,102	0.742	1.4	55.596	53,993	1.603	3.0	0.88	8.7
	53 708	53 001	0 707	1.3	56,289	54 668	1 621	3.0	0.89	87
	53 136	52 454	0.682	1.3	56,529	54 327	2 202	4 1	1 48	14.6
	00,100	02,101	0,002	.,0	55,662	53,838	1 824	3.4	1 10	11.0
					54 955	53,463	1,024	2.8	0.78	7.8
Mittal	52 7	52.0	0.7	1 2	55.9	54.0	1,432	2,0	0,70	0.9
Stobu	55,7	53,0	0,7	1,3	55,6	54,0	1,7	3,2	0,99	9,0
Stabw	0,4	0,4	0,0	0,0	0,5	0,4	0,2	0,4	0,22	2,1
median	33,7		0,7	1,5	33,0	34,0	1,0	3,0	0,91	3,0
52 mm	55.085	54.365	0.720	1.3	55.381	53.498	1.883	3.5	1.11	11.2
6-18-4-18-6	52,066	51,409	0,657	1,3	56,384	54,761	1,623	3,0	0,84	8,2
	53,559	52,871	0.688	1.3	55.421	53,888	1.533	2.8	0.76	7.6
	54,147	53,433	0.714	1.3	54,905	53.612	1.293	2.4	0.52	5.2
	54 670	53 933	0.737	1.4	55,349	53 461	1 888	3.5	1 12	11.3
	54 140	53 409	0 731	14	56 109	53 921	2 188	4 1	1 41	14 1
	54 146	53 038	1 108	21	55 305	53 604	1 701	3.2	0 03	93
	54 722	53 062	0.770	2, i	55 246	53 206	1,701	3.5	1.00	11.0
	04,132	00,90Z	0,770	1,4	55,000	52,000	1,000	3,5	1,09	10.2
					55,063	53,280	1,777	3,3	1,01	10,2
N#*** - 1					55,414	53,510	1,904	3,0	1,13	11,4
WITTEL	54,1	53,3	0,8	1,4	55,5	53,7	1,8	3,3	0,99	10,0
Stabw	0,9	0,9	0,1	0,3	0,4	0,4	0,2	0,5	0,25	2,5
Median	54,1	53,4	0,7	1,4	55,4	53,6	1,8	3,4	1,05	10,6

Hersteller	17		Abstandbalter	•	Edelstahl					
Tiorotonor			Sekundärdich	tstoff	PS					
			Tc	in %	22					
			10	111 70						
	Lieferzustan	d			Gealtert				"7"	
				"Ti"	"m fe"	"m tr"			Zubeladung	Feucht.
	TM	TM		Anfangs-	TM	TM	"B"	"Tf"	durch	aufn.faktor
	entnommen	aetrocknet	Beladung	beladung	entnommen	getrocknet	Beladung	Beladung	Alterung	I
	in q	in g	in q	in %	in q	in q	in q	in %	in g	in %
36 mm	29.454	28,725	0.729	2.5	28.355	27.095	1.260	4.65	0.62	21.1
4-12-4-12-4	29,008	28,335	0,673	2.4	20,184	19,528	0.656	3.4	0,19	15,3
	27.684	27.022	0.662	2.4	32.648	28.962	3,686	12.7	0.30	57.9
	27,963	27,374	0,589	2.2	32,587	28,773	3.814	13.3	0.45	60.3
	31,758	28,510	3.248	11.4	28,421	26.984	1.437	5.3	0.79	24.2
	31,753	28,564	3,189	11.2	28.540	27.356	1,184	4.3	0.53	19.7
	32,723	29.031	3.692	12.7	27.467	26.287	1,180	4.5	0.55	20.4
	31,769	28,494	3,275	11.5	28,643	27,431	1.212	4.4	0,56	20,1
		,			34,190	30,105	4.085	13.6	0.56	61.7
					28,973	27,590	1.383	5.01	0,73	22,8
Mittel	30.3	28.3	2.0	7.0	29.0	27.0	2.0	7.1	0.53	32.3
Stabw	2,0	0,7	1,4	5,0	3,9	2,9	1,3	4,2	0,18	19,2
Median	30,6	28,5	2,0	6,9	28,6	27,4	1,3	4,8	0,56	22,0
			Ti Mittel	2,4	Ti Stabw	0,2				
			Ti Mittel	11,7	Ti Stabw	0,7				
48 mm	45,474	44,506	0,968	2,2	46,943	45,197	1,746	3,9	0,76	8,4
4-18-4-18-4	45,326	44,362	0,964	2,2	46,298	44,524	1,774	4,0	0,80	9,0
	45,491	44,544	0,947	2,1	47,522	45,295	2,227	4,9	1,23	13,8
	45,906	44,950	0,956	2,1	46,641	44,835	1,806	4,0	0,82	9,3
	46,006	44,986	1,020	2,3	46,946	44,843	2,103	4,7	1,12	12,6
					47,052	45,169	1,883	4,2	0,89	10,0
	45,621	44,655	0,966	2,2	46,704	45,009	1,695	3,8	0,71	7,9
	44,752	43,739	1,013	2,3	46,295	44,348	1,947	4,4	0,97	11,1
					46,589	44,708	1,881	4,2	0,90	10,2
					46,735	44,867	1,868	4,2	0,88	10,0
Mittel	45,5	44,5	1,0	2,2	46,8	44,9	1,9	4,2	0,91	10,2
Stabw	0,4	0,4	0,0	0,1	0,4	0,3	0,2	0,4	0,16	1,8
Median	45,5	44,5	1,0	2,2	46,7	44,9	1,9	4,2	0,89	10,0
	_									
52 mm	45,615	44,708	0,907	2,0	46,172	44,638	1,534	3,4	0,50	5,7
6-18-4-18-6	46,173	45,273	0,900	2,0	46,451	44,505	1,946	4,4	0,91	10,4
	45,832	44,889	0,943	2,1	47,062	45,280	1,782	3,9	0,73	8,2
	46,957	46,041	0,916	2,0	46,698	45,032	1,666	3,7	0,62	7,0
	45,555	44,643	0,912	2,0	46,385	44,950	1,435	3,2	0,39	4,4
	46,753	45,818	0,935	2,0	46,570	45,047	1,523	3,4	0,48	5,4
	45,927	44,968	0,959	2,1	44,588	42,740	1,848	4,3	0,86	10,2
	46,796	44,893	1,903	4,2	46,200	44,405	1,795	4,0	0,76	8,8
					47,919	46,076	1,843	4,0	0,77	8,5
					47,764	45,925	1,839	4,0	0,77	8,6
Mittel	46,2	45,2	1,0	2,3	46,6	44,9	1,7	3,8	0,68	7,7
Stabw	0,6	0,5	0,3	0,8	0,9	0,9	0,2	0,4	0,17	2,0
Median	46,1	44,9	0,9	2,0	46,5	45,0	1,8	4,0	0,75	8,4

Aufbau 4-12-4-12-4: Hier waren offensichtlich einige Probekörper mit einer Anfangsbeladung von etwa 2,4 % und andere mit etwa 11,7 % hergestellt worden. Diese beiden unterschiedlichen Anfangsbeladungen ließen sich auch den gealterten Probekörpern zuordnen. Die Berechnung von Zubeladung und I-Faktor erfolgte dementsprechend (s. Farbkodierung).

Harsteller	18		Abstandbalte	r .	Kunststoff / m	netallische Diff	usionssparra			
Tiersteller	10		Sekundärdich	i. stetoff	DQ		usionssperre			
			To	in 9/	20					
			IC.	111 70	22					
	Liste muster	-1			O a a lá a má				"7"	
	Lielerzustan	a		077:0	Geattert	"m (-"			Zubolodung	Fought
	TM	TNA		11 A ofen de			""		Zubeladung	Feucht.
	T IVI		Data Las	Aniangs-	I IVI	T IVI	D	IT Data ta sa	duich	aumiaktor
	entnommen	getrocknet	Beladung	beladung	entnommen	getrocknet	Beladung	Beladung	Alterung	1
~~	in g	In g	in g	In %	in g	in g	In g	IN %	in g	In %
36 mm	42,951	41,938	1,013	2,4	51,838	49,152	2,686	5,46	1,53	15,9
4-12-4-12-4	50,375	49,239	1,136	2,3	42,399	40,111	2,288	5,7	1,35	17,1
	50,789	49,630	1,159	2,3	52,119	49,607	2,512	5,1	1,35	13,8
	40,385	39,403	0,982	2,5	51,911	49,462	2,449	5,0	1,29	13,3
	50,403	49,286	1,117	2,3	51,509	49,400	2,109	4,3	0,95	9,8
	50,642	49,498	1,144	2,3	51,251	48,424	2,827	5,8	1,69	17,8
	49,963	48,831	1,132	2,3	52,403	49,790	2,613	5,2	1,45	14,8
	45,317	44,294	1,023	2,3	52,246	49,791	2,455	4,9	1,29	13,2
					52,373	49,746	2,627	5,3	1,46	14,9
					50,803	48,284	2,519	5,22	1,39	14,6
Mittel	47,6	46,5	1,1	2,3	50,9	48,4	2,5	5,2	1,37	14,5
Stabw	4,1	4,1	0,1	0,1	3,0	3,0	0,2	0,4	0,19	2,2
Median	50,2	49,0	1,1	2,3	51,9	49,4	2,5	5,2	1,37	14,7
48 mm	85,912	84,197	1,715	2,0	86,884	83,108	3,776	4,5	1,91	11,6
4-18-4-18-4	85,681	83,956	1,725	2,1	87,774	84,074	3,700	4,4	1,82	10,9
	59,848	58,567	1,281	2,2	89,264	85,059	4,205	4,9	2,30	13,7
	84,645	82,868	1,777	2,1	89,470	85,369	4,101	4,8	2,19	13,0
	58,396	57,080	1,316	2,3	87,014	82,913	4,101	4,9	2,24	13,7
	73,148	71,067	2,081	2,9	87,129	83,021	4,108	4,9	2,25	13,7
	83,061	81,340	1,721	2,1	74,643	70,798	3,845	5,4	2,26	16,1
	85,301	83,495	1,806	2,2	87,043	83,244	3,799	4,6	1,93	11,8
					79,323	74,841	4,482	6,0	2,80	19,0
					85,897	81,932	3,965	4,8	2,13	13,1
Mittel	77.0	75.3	1.7	2.2	85.4	81.4	4.0	4.9	2.18	13.7
Stabw	11.8	11.6	0.3	0.3	4.7	4.8	0.2	0.5	0.28	2.4
Median	83,9	82,1	1,7	2,2	87,0	83,1	4,0	4,9	2,21	13,4
52 mm	02.000	00 444	1 760	2.0	97 505	02 040	4 076	5.4	2 47	15.0
02 11111 6-18-1-19 6	00,000 85,000	92 206	1,709	2,2	07,525 87 664	03,249 82 771	4,270	5,1	2,47	10,0
0-10-4-10-0	85,082	83,290	1,700	2,1	87,004	02,771	4,093	5,9	3,10	10,9
	12,003	71,099	1,504	2,2	89,097	85,079	4,018	4,7	2,17	12,9
	86,180	84,405	1,775	2,1	75,664	71,323	4,341	6,1	2,80	19,8
	80,004	84,318	1,740	2,1	00,000	84,516	4,440	5,3	2,01	15,0
	69,844	08,311	1,533	2,2	88,230	83,922	4,308	5,1	2,49	15,0
	85,275	83,483	1,792	2,1	79,351	75,016	4,335	5,8	2,71	18,2
	68,078	66,568	1,510	2,3	89,791	85,632	4,159	4,9	2,30	13,6
					89,254	85,074	4,180	4,9	2,34	13,9
					69,752	65,633	4,119	6,3	2,70	20,7
Mittel	79,6	77,9	1,7	2,2	84,5	80,2	4,3	5,4	2,57	16,3
Stabw	7,9	7,8	0,1	0,1	7,0	7,0	0,2	0,6	0,27	2,8
Median	84,5	82,7	1,8	2,2	87,9	83,6	4,3	5,2	2,55	15,3

Hersteller	19		Abstandhalte	r:	Kunststoff / metallische Diffusionssperre					
			Sekundärdich	ntstoff:	PU					
			Tc	in %	20					
	Lieferzustan	d			Gealtert				"Z"	
				"Tì"	"m fe"	"m tr"			Zubeladung	Feucht.
	TM	TM		Anfangs-	TM	TM	"B"	"Tf"	durch	aufn.faktor
	entnommen	getrocknet	Beladung	beladung	entnommen	getrocknet	Beladung	Beladung	Alterung	I
	in g	in g	in g	in %	in g	in g	in g	in %	in g	in %
36 mm	31,578	30,971	0,607	2,0	29,178	26,914	2,264	8,41	1,66	34,7
4-12-4-12-4	23,773	23,234	0,539	2,3	42,676	39,719	2,957	7,4	2,07	29,3
	23,359	22,870	0,489	2,1	33,660	31,031	2,629	8,5	1,93	35,1
	19,254	18,779	0,475	2,5	25,999	24,089	1,910	7,9	1,37	32,0
	27,513	26,931	0,582	2,2	21,260	18,094	3,166	17,5	2,76	85,9
	48,100	47,133	0,967	2,1	46,655	43,433	3,222	7,4	2,25	29,1
	24,669	24,160	0.509	2.1	30.278	27.889	2.389	8.6	1.76	35.6
	13,901	13,537	0,364	2,7	38,076	35,184	2,892	8,2	2,10	33,7
		,	,	,	37.059	32,598	4,461	13.7	3.73	64.4
					31.935	28.862	3.073	10.65	2.43	47.3
Mittel	26.5	26.0	0.6	22	33.7	30.8	29	9.8	2 21	42 7
Stabw	10.2	10.0	0.2	0.3	7.7	7.4	0.7	3.3	0.66	18.5
Median	24.2	23.7	0.5	21	32.8	29.9	29	8.4	2.08	34.9
mean	2-1,2	20,1	0,0	-, .	02,0	20,0	2,0	0,4	2,00	0-1,0
48 mm	59,901	58,843	1,058	1,8	67,766	63,258	3,909	10,8	3,25	44,3
4-18-4-18-4	40,867	40,100	0,767	1,9	65,017	60,804	3,803	8,4	2,98	32,6
	44,919	44,086	0,833	1,9	40,258	36,349	3,909	10,8	3,25	49,2
	62,126	61,036	1,090	1,8	49,122	45,319	3,803	8,4	2,98	36,2
	63,230	62,132	1,098	1,8	66,245	62,376	3,869	6,2	2,74	24,1
	63,888	62,796	1,092	1,7	55,007	51,297	3,710	7,2	2,78	29,8
	64,185	63,063	1,122	1,8	66,583	62,628	3,955	6,3	2,82	24,7
	37,365	36,686	0,679	1,9	65,112	61,191	3,921	6,4	2,81	25,3
					65,146	61,407	3,739	6,1	2,62	23,5
M:44 a 1	EAG	F 2 C	10	4.0	<u> </u>	50.4	2.0	7.0	2.04	20.0
Stobur	54,6	53,6	1,0	1,0	0,0	0, I	3,0	7,0	2,91	32,2
Stabw	61.0	F0.0	0,2	0,1	9,7	9,0	0,1	1,9	0,22	9,4
				1,0		01,2	5,5		2,02	23,0
52 mm	63,461	62,402	1.059	1.7	39.280	34,755	4.525	13.0	3.94	61.9
6-18-4-18-6	61,357	60,314	1,043	1,7	41,417	38,180	3,237	8,5	2,59	37,1
	62,826	61,791	1.035	1.7	61.294	55.822	5.472	9.8	4.53	44.3
	65,434	64.341	1.093	1.7	70.224	63.480	6.744	10.6	5.67	48.8
	64.377	63,287	1.090	1.7	68.853	62.836	6.017	9.6	4.95	43.1
	65 294	64 224	1 070	17	67 837	63 179	4 658	7 4	3.59	31.0
	38 354	37,703	0.651	17	71,914	63,131	8,783	13.9	7,71	66.7
	62,945	61,938	1 007	1.6	20,952	16 470	4 482	27.2	4 20	139.4
	02,010	0.,000	.,	.,0	67 684	62 845	4 839	77	3 78	32.8
	-				68 734	62,557	6 177	9.9	5 12	44 7
Mittel	60.5	59.5	10	17	57.8	52 3	5.5	11 8	4 61	55.0
Stabw	9.1	8.9	0,1	0.0	17.6	16.6	1.5	5.8	1.40	31.8
Median	63.2	62.2	1 1	17	67.9	62 7	5.2	0.9	4 27	44.5
Meulali	03,2	02,2	1,1	1,7	07,0	02,1	J,Z	3,0	4,57	44,3

Horstollor	20		Abstandbalta	-	Kunststoff / m	otollicaha Diff	ucionaconorro			
neistellei	20		Abstandnaite	I.	Runsision / II	letailische Dil	usionssperre			
			Sekundardici	itstoil.	PU					
			IC	IN %	22					
	1				0				11 - 711	
	Lieferzustan	a			Gealtert				" <u>Z</u> "	F
		77.4		" I I" A - 6	"M te"	"M tr"		0.775.0	Zubeladung	Feucht.
	IM	IM		Antangs-	IM	IM	.B.	" It"	durch	auth.taktor
	entnommen	getrocknet	Beladung	beladung	entnommen	getrocknet	Beladung	Beladung	Alterung	<u> </u>
	in g	in g	in g	in %	in g	in g	in g	in %	in g	in %
36 mm	28,636	27,948	0,688	2,5	28,927	27,936	0,991	3,55	0,29	5,3
4-12-4-12-4	27,354	26,671	0,683	2,6						
	28,573	27,879	0,694	2,5	29,899	28,024	1,875	6,7	1,17	21,4
	28,848	28,149	0,699	2,5	28,893	27,553	1,340	4,9	0,65	12,1
	28,029	27,331	0,698	2,6	30,509	28,213	2,296	8,1	1,59	28,9
	28,606	27,925	0,681	2,4	28,917	26,861	2,056	7,7	1,38	26,4
	28,007	27,334	0,673	2,5	29,955	28,141	1,814	6,4	1,11	20,2
	27,316	26,605	0,711	2,7	28,211	26,412	1,799	6,8	1,13	22,0
					29,778	28,157	1,621	5,8	0,91	16,6
					29,507	27,845	1,662	5,97	0,96	17,7
Mittel	28,2	27,5	0,7	2,5	29,4	27,7	1,7	6,2	1,02	19,0
Stabw	0,6	0,6	0,0	0,1	0,7	0,6	0,4	1,4	0,38	7,2
Median	28,3	27,6	0,7	2,5	29,5	27,9	1,8	6,4	1,11	20,2
48 mm	41.658	41.018	0.640	1.6	42.870	41.201	1.658	4.0	0.99	11.7
4-18-4-18-4	21.890	21,516	0.374	1.7	42.844	41,519	1.299	3.1	0.63	7.4
	41,493	40.850	0.643	1.6	43,280	41.622	1.658	4.0	0.99	11.7
	41.343	40,698	0.645	1.6	42 916	41 617	1 299	3.1	0.63	7 4
	41 001	40 353	0.648	1.6	42 148	40,486	1,200	4 1	1 01	12.3
	41 727	41,055	0,672	1,0	41 860	40,479	1,381	3.4	0.73	8.9
	41,024	41,000	0,672	1,0	42 032	40,456	1,501	3.9	0,70	11.2
	42 189	41 531	0,658	1,0	12,002	10,100	1,070	0,0	0,00	11,2
	12,100	41,001	0,000	1,0	66 748	64 878	1 870	29	0.83	63
					42 956	41 570	1,070	2,3	0,03	8.4
Mittal	30.2	38.5	0.6	1.6	45.3	43.8	1,511	3.5	0,71	0,4
Stabu	39,2	50,5	0,0	1,0	40,0	43,8	1,5	3,5	0,03	9,5
Modian	1,0	0,9	0,1	1.6	0,1	7,9	1.6	0,5	0,10	2,3
Median	41,0	40,0	0,0	1,0	72,5	41,5	1,0	3,4	0,00	0,0
52 mm	41,461	40,812	0,649	1,6	43,345	41,385	1,960	4,7	1,31	15,5
6-18-4-18-6	42,056	41,396	0,660	1,6	43,145	41,727	1,418	3,4	0,76	8,9
	41,757	41,120	0,637	1,5	42,969	41,316	1,653	4,0	1,00	11,9
	42,447	41,765	0,682	1,6	42,224	40,875	1,349	3,3	0,70	8,4
	41,924	41,271	0,653	1,6	42,503	41,626	0,877	2,1	0,22	2,6
	41,869	41,217	0,652	1,6	42,987	41,564	1,423	3,4	0,77	9,0
	40,975	40,347	0,628	1,6	42,184	41,325	0,859	2,1	0,21	2,4
	42,183	41,535	0,648	1,6	41,661	40,284	1,377	3,4	0,74	9,0
					42,921	41,316	1,605	3,9	0,95	11,3
					42,617	41,550	1,067	2,6	0,41	4,8
Mittel	41,8	41,2	0,7	1,6	42,7	41,3	1,4	3,3	0,71	8,4
Stabw	0,5	0,4	0,0	0,0	0,5	0,4	0,3	0,8	0,35	4,1
Median	41,9	41,2	0,7	1,6	42,8	41,4	1,4	3,4	0,75	8,9

ift Rosenheim Theodor-Gietl-Straße 7-9 83026 Rosenheim

Tel.: +49 (0) 80 31 / 261-0 Fax: +49 (0) 80 31 / 261-290 E-Mail: info@ift-rosenheim.de www.ift-rosenheim.de

© ift Rosenheim 2015